4 research outputs found

    The Influence of Garden Size and Floral Cover on Pollen Deposition in Urban Community Gardens

    Get PDF
    Many cucurbits, such as cucumbers, squashes and pumpkins, depend on pollinating bees in order to set fruit. However, fruit yield and progeny vigor in these plants generally decreases as heterospecific pollen deposition increases. We studied how the spatial area dedicated to cucumbers (Cucumis sativis), versus other flowering plants, influenced the deposition of conspecific and heterospecific pollen on cucumber plants in New York City community gardens. We also examined the effect of garden size on conspecific and heterospecific pollen deposition on cucumber plants. Female flowers were collected from potted cucumber plants that had been experimentally placed into the gardens, specifically for this study, or that were established in raised beds by members of the community garden. In the laboratory, pollen grains were isolated from the flower by acetolysis, and the number of heterospecific and conspecific cucumber pollen grains were quantified. Conspecific pollen deposition was positively and significantly associated with the size of a community garden, as well as with the area of each garden dedicated to non-cucumber, flowering plants (i.e. floral cover) and the area of each garden dedicated to cucumber plants (i.e. cucumber cover). Although floral cover explained a greater proportion of the variance, cucumber cover had the strongest effect on conspecific pollen deposition. Heterospecific pollen deposition was positively and significantly related to garden area. However, no significant relationship was found between heterospecific pollen deposition and floral cover or cucumber cover. Based upon these results, we hypothesize that floral cover positively impacts conspecific pollen deposition by attracting a greater number of pollinators into an urban garden, and that total cucumber area positively impacts conspecific pollen deposition when pollinators are locally foraging within a garden. We suggest that the arrangement of plants within a garden can positively influence yield in fruit and vegetable-producing plants within urban community gardens. Due to the low availability of fruits and vegetables within the stores of the neighborhoods where this study was conducted, developing a better understanding of those factors that constrain or foster fruit and vegetable production are important to increasing food security and public health

    The Influence of Garden Size and Floral Cover on Pollen Deposition in Urban Community Gardens

    No full text
    Many cucurbits, such as cucumbers, squashes and pumpkins, depend on pollinating bees in order to set fruit. However, fruit yield and progeny vigor in these plants generally decreases as heterospecific pollen deposition increases. We studied how the spatial area dedicated to cucumbers (Cucumis sativis), versus other flowering plants, influenced the deposition of conspecific and heterospecific pollen on cucumber plants in New York City community gardens. We also examined the effect of garden size on conspecific and heterospecific pollen deposition on cucumber plants. Female flowers were collected from potted cucumber plants that had been experimentally placed into the gardens, specifically for this study, or that were established in raised beds by members of the community garden. In the laboratory, pollen grains were isolated from the flower by acetolysis, and the number of heterospecific and conspecific cucumber pollen grains were quantified. Conspecific pollen deposition was positively and significantly associated with the size of a community garden, as well as with the area of each garden dedicated to non-cucumber, flowering plants (i.e. floral cover) and the area of each garden dedicated to cucumber plants (i.e. cucumber cover). Although floral cover explained a greater proportion of the variance, cucumber cover had the strongest effect on conspecific pollen deposition. Heterospecific pollen deposition was positively and significantly related to garden area. However, no significant relationship was found between heterospecific pollen deposition and floral cover, or cucumber cover. Based upon these results, we hypothesize that floral cover positively impacts conspecific pollen deposition by attracting a greater number of pollinators into an urban garden, and that total cucumber area positively impacts conspecific pollen deposition when pollinators are locally foraging within a garden. We suggest that the arrangement of plants within a garden can positively influence yield in fruit and vegetable-producing plants within urban community gardens. Due to the low availability of fruits and vegetables within the stores of the neighborhoods where this study was conducted, developing a better understanding of those factors that constrain or foster fruit and vegetable production are important to increasing food security and public health

    Occurrence of Soil and Tick-Borne Fungi and Related Virulence Tests for Pathogenicity to Ixodes Scapularis (Acariixodidae)

    No full text
    Ixodes scapularis Say, the blacklegged tick, vectors Borrelia burgdorferi Johnson et al. 1984, the bacterium that causes Lyme disease, the most important vector-borne disease in the United States. Efforts to reduce I. scapularis populations are shifting toward the development of biological control methods. Currently, only a few entomopathogenic fungal species are considered virulent to ticks. We hypothesized that these species may not represent the most abundant local taxa that would be pathogenic to ticks in situ. To identify potential entomopathogenic fungi at a study site in Westchester County, New York, we sampled soils and ticks, extracted and amplified the internal transcribed spacer region of nuclear ribosomal DNA (nrDNA), and compared sequences with those in GenBank. Over three sampling periods from June 2007 to May 2008, 70 fungal taxa were isolated and identified from soils (48 taxa) and ticks (27 taxa; 5 taxa were found both in soil and on ticks) collected in this study, encompassing species in 25 different genera. In laboratory bioassays, 15 fungal taxa were found to be significantly virulent, although none of these were previously considered common pathogens of I. scapularis. Two species, Hypocrea lixii Patouillard 1891 and Penicillium soppii K. M. Zalessky 1927, were tested in field trials by spraying suspensions on forested plots. Mean tick mortality was 71% after treatment with H. lixii, 58% after treatment with P. soppii, and 32% in the control plots. The complete diversity of entomopathogenic fungal species at this site is yet to be defined, but, in general, such fungi appear to be more common in forest habitats where I. scapularis resides than previously thought. Examination of intact fungal communities can provide information that serves as the foundation for site-specific biocontrol programs

    Isolation of Entomopathogenic Fungi from Soils and Ixodes Scapularis (Acariixodidae) Ticks: Prevalence and Methods

    No full text
    Entomopathogenic fungi are commonly found in forested soils that provide tick habitat, and many species are pathogenic to Ixodes scapularis Say, the blacklegged tick. As a first step to developing effective biocontrol strategies, the objective of this study was to determine the best methods to isolate entomopathogenic fungal species from field-collected samples of soils and ticks from an Eastern deciduous forest where I. scapularis is common. Several methods were assessed: (1) soils, leaf litter, and ticks were plated on two types of media; (2) soils were assayed for entomopathogenic fungi using the Galleria bait method; (3) DNA from internal transcribed spacer (ITS) regions of the nuclear ribosomal repeat was extracted from pure cultures obtained from soils, Galleria, and ticks and was amplified and sequenced; and (4) DNA was extracted directly from ticks, amplified, and sequenced. We conclude that (1) ticks encounter potentially entomopathogenic fungi more often in soil than in leaf litter, (2) many species of potentially entomopathogenic fungi found in the soil can readily be cultured, (3) the Galleria bait method is a sufficiently efficient method for isolation of these fungi from soils, and (4) although DNA extraction from ticks was not possible in this study because of small sample size, DNA extraction from fungi isolated from soils and from ticks was successful and provided clean sequences in 100 and 73% of samples, respectively. A combination of the above methods is clearly necessary for optimal characterization of entomopathogenic fungi associated with ticks in the environment
    corecore