6 research outputs found

    A model for predicting effect of treatment on progression-free survival using MRD as a surrogate end point in CLL

    Get PDF
    Our objective was to evaluate minimal residual disease (MRD) at the end of induction treatment with chemoimmunotherapy as a surrogate end point for progression-free survival (PFS) in chronic lymphocytic leukemia (CLL) based on 3 randomized, phase 3 clinical trials (ClinicalTrials.gov identifiers NCT00281918, NCT00769522, and NCT02053610). MRD was measured in peripheral blood (PB) from treatment-naïve patients in the CLL8, CLL10, and CLL11 clinical trials, and quantified by 4-color flow cytometry or allele-specific oligonucleotide real-time quantitative polymerase chain reaction. A meta-regression model was developed to predict treatment effect on PFS using treatment effect on PB-MRD. PB-MRD levels were measured in 393, 337, and 474 patients from CLL8, CLL10, and CLL11, respectively. The model demonstrated a statistically significant relationship between treatment effect on PB-MRD and treatment effect on PFS. As the difference between treatment arms in PB-MRD response rates increased, a reduction in the risk of progression or death was observed; for each unit increase in the (log) ratio of MRD2 rates between arms, the log of the PFS hazard ratio decreased by 20.188 (95% confidence interval, 20.321 to 20.055; P 5 .008). External model validation on the REACH trial and sensitivity analyses confirm the robustness and applicability of the surrogacy model. Our surrogacy model supports use of PB-MRD as a primary end point in randomized clinical trials of chemoimmunotherapy in CLL. Additional CLL trial data are required to establish a more precise quantitative relationship between MRD and PFS, and to support general applicability of MRD surrogacy for PFS across diverse patient characteristics, treatment regimens, and different treatment mechanisms of action

    Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia.

    No full text
    International audienceThe efficacy of anti-CD33 immunoconjugates had been previously demonstrated for gemtuzumab-ozogamicin. AVE9633 is an anti-CD33-maytansine conjugate created by ImmunoGen Inc. Phase I trials of AVE9633 were performed in patients with AML to evaluate tolerability, pharmacokinetics and pharmacodynamics. Three phase I studies of AVE9633 were performed in 54 patients with refractory/relapsed AML, evaluating drug infusion on day 1 of a 21-day cycle (Day 1 study), day 1 and 8 (Day 1/8 study) and day 1, 4 and 7 (Day 1/4/7 study) of a 28-day cycle. Toxicity was mainly allergic reaction during infusion (3 grade 3 bronchospasms). DLT was reached for the D1-D7 schedule at 150 mg/sqm (1 keratitis, 1 liver toxicity), and the MTD was set at 130 mg/sqm for this schedule. In the two other phases I, the DLT was not reached. In the Day 1/8 study, CD33 on peripheral blasts was saturated and down-modulated for doses of 75 mg/m(2) × 2 or higher, which was correlated with WBC kinetics and plasma levels of AVE9633. Decrease of DM4/CD33 ratio on the blasts surface between day 1 and 8 was the rational for evaluating day 1/4/7 schedule. This induced relatively constant DM4/CD33 levels over the first 8 days, however no activity was noted. One CRp, one PR and biological activity in five other patients were observed in this study. The Day 1 and Day 1/4/7 studies were early discontinued because of drug inactivity at doses significantly higher than CD33 -saturating doses. No myelossuppression was observed at any trial of AVE9633. The pharmacokinetics/pharmacodynamics data obtained in these studies will provide very useful information for the design of the next generation of immunoconjugates
    corecore