701 research outputs found
Data-Driven Modeling and Regulation of Aircraft Brakes Degradation via Antiskid Controllers
In ground vehicles, braking actuator degradation and tire consumption do not represent a significant maintenance cost as the lifespan of both components, at least in common situations, is rather long. In the aeronautical context, and for aircraft in particular, instead, braking actuator degradation and tire consumption significantly contribute to an aircraft maintenance cost due to the frequency of their replacement. This is mainly due to the fact that aircraft braking maneuvers last significantly longer than those in the automotive context. So that the antilock braking system is always active during the braking maneuver, making its impact on the consumption of the two components significant. This work proposes an innovative data-driven model of brake and tire degradation, showing how they are related to the antiskid controller parameters. The analysis is carried out in a MATLAB/Simulink environment on a single wheel rigid body model, validated experimentally, which includes all the nonlinear effects peculiar of the aeronautic context. The results show that by using an appropriate antiskid control approach, it is possible to directly regulate the consumption of these components while at the same time guaranteeing the required braking performance
Shock Absorber Leakage Impact on Aircraft Lateral Stability During Ground Handling Maneuvers
Aircraft braking maneuvers are safety-critical on-ground motions that exhibit complex dynamics and significant dependence on system operating conditions. The fundamental interface between the aircraft and the ground is the landing gear. Among the landing gear components, the shock absorbers may be subject to gas leakage during their lifetime, which is an anomaly that could compromise the lateral stability properties of the aircraft on the operating regimes found during braking maneuvers. In this paper, an explicit link is established between main landing gear shock absorber leakage and aircraft lateral stability. To investigate lateral stability, a high-fidelity multibody nonlinear aircraft simulator is developed in a MATLAB/Simulink framework and validated against experimental data. To generate insight into the problem and to quantify shock absorber leakage impact on aircraft lateral stability, two simple but descriptive analytical models are also developed, each one on a different operating mode of the system. The analysis of the models reveals that shock absorber leakage can have a significant effect on aircraft lateral stability, especially at high velocities and highly damped nose wheel steering conditions. The models developed in this work may be used by aircraft control system designers to come up with more effective lateral stability controllers in the event of main landing gear shock absorber leakage
Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes
Polarized organization of the cytoplasm of growing pollen tubes is maintained by coordinated function of actin filaments (AFs) and microtubules (MTs). AFs convey post-Golgi secretory vesicles to the tip where some fuse with specific domains of the plasma membrane (PM). Secretory activity is balanced by PM retrieval that maintains cell membrane economy and regulates the polarized composition of the PM, by dividing lipids/proteins between the shank and the tip. Although AFs play a key role in PM internalization in the shank, the role of MTs in exoendocytosis needs to be characterized. The present results show that integrity of the MT cytoskeleton is necessary to control exoendocytosis events in the tip. MT polymerization plays a role in promoting PM invagination in the apex of tobacco pollen tubes since Nocodazole affected PM internalization in the tip and subsequent migration of endocytic vesicles from the apex for degradation. MT depolymerization in the apex and shank was associated with misallocation of a significantly greater amount of internalized PM to the Golgi apparatus and its early recycling to the secretory pathway. FRAP experiments also showed that MT depolymerization in the tip region influenced the rate of exocytosis in the central domain of the apical PM
Generalized Beam Models Analysis for Aeroelastic Morphing Applications
Generalized beam theory, Reduced–order modeling, Morphing wing structures Abstract. In the aerospace engineering field, morphing structures refer to mechanical structures capable of adapting their shape in order to improve some vehicle performance. Their analysis requires a computational model detailed enough to represent the internal structural parts which make morphing possible. These are often small with respect to the size of the external structure, so the computational cost of a full 3D finite element model would be high. We restrict our attention to straight, constant cross–section wings and rely on generalized beam theory to develop a computational model capable of analysing the morphing behaviour with a small number of degrees of freedom. We propose an extention of the generalized beam models presented by Morandini et al. (2010). From a singular value analysis of the cross–section finite element model, we derive an additional set of degrees of freedom strictly related to the morphing behaviour, and show the convergence of our projection–based reduced–order structural model to the full order one for some validation cases. The proposed method is applied to the analysis of the FishBAC morphing structure introduced by Woods et al. (2012
Helicopter Rotor Sailing by Non-Smooth Dynamics Co-Simulation
This paper presents the application of a co-simulation approach for the simulation of frictional contact in general-purpose multibody dynamics to a rotorcraft dynamics problem. The proposed approach is based on the co-simulation of a main problem, which is described and solved as a set of differential algebraic equations, with a subproblem that is characterized by nonsmooth dynamics events and solved using a timestepping technique. The implementation and validation of the formulation is presented. The method is applied to the analysis of the droop and anti-flap contacts of helicopter rotor blades. Simulations focusing on the problem of blade sailing are conducted to understand the behavior and assess the validity of the method. For this purpose, the results obtained using a contact model based on Hertzian reaction forces at the interface are compared with those of the proposed approach
Effects of periodontal therapy on white blood cell count and levels of transforming growth factor beta in serum of subjects with severe periodontitis
This study aimed to investigate the effects of nonsurgical periodontal therapy on white blood cell (WBC) count and levels of transforming growth factor beta (TGF—β) in serum from subjects with severe periodontitis. Serum from 28 subjects with periodontitis (mean age: 34.36±6.24; 32% men) and 27 healthy controls (mean age: 33.18±6.42; 33% men) were collected prior to therapy. Blood samples were obtained from 23 subjects who completed therapy (9—12 months). A well—controlled periodontal treatment protocol was established in three stages: mechanical periodontal therapy (scaling and root planning), reinstrumentation of dental sites, and supportive periodontal therapy. Periodontal and systemic parameters such as the total number of WBCs and TGF—β levels, accessed by enzyme—linked immunosorbent assay (ELISA), were included. After therapy, all clinical periodontal parameters decreased (
- …