1 research outputs found
Freeze-thaw durability of recycled concrete from construction and demolition wastes
Road engineering is one of the most accepted applications for concrete including
recycled aggregates from construction and demolition wastes as a partial replacement of the natural
coarse aggregates. Amongst the durability concerns of such application, the deterioration due to
freeze-thaw cycles is one of the most important causes decreasing the life span of concrete in
countries with a continental climate. Moreover, the use of de-icing salts, which is a common
practice to prevent ice formation on roadways and walkways, increases the superficial degradation
of concrete due to frost-salt scaling. Thus, this paper aims to assess the resistance to frost salt with
de-icing salts of two recycled concrete mixtures containing a 50% replacement of the conventional
gravel by recycled aggregates both of mixed and ceramic nature, i.e. containing ceramic percentages
of 34% and 100%, in comparison to a conventional concrete made with siliceous gravel. Therefore,
the surface scaling was evaluated based on EN 1339 (2004) on 28 days cured cylinders, exposed to
7, 14, 21 and 28 freeze-thaw cycles in the presence of sodium chloride solution. Given that no airentraining
admixture was used in any of the mixtures, the scaling of both conventional and recycled
concretes exceeded the 1 kg/m2 limit established by the European standard. Nonetheless, for the
casting surface, the recycled concrete with low ceramic content exhibited a similar behaviour to the
conventional concrete, whereas the performance of the recycled concrete with high ceramic content
was better. However, as expected, trowelled surfaces showed a worse performance and both
recycled concretes had a lower freeze-thaw durability than the conventional mixture. In any case,
the results suggested that the composition of the recycled aggregates could be used as a factor to
limit the differences in performance between recycled and conventional mixtures