4 research outputs found

    Tell Me What Is Good About This Property: Leveraging Reviews For Segment-Personalized Image Collection Summarization

    Full text link
    Image collection summarization techniques aim to present a compact representation of an image gallery through a carefully selected subset of images that captures its semantic content. When it comes to web content, however, the ideal selection can vary based on the user's specific intentions and preferences. This is particularly relevant at Booking.com, where presenting properties and their visual summaries that align with users' expectations is crucial. To address this challenge, we consider user intentions in the summarization of property visuals by analyzing property reviews and extracting the most significant aspects mentioned by users. By incorporating the insights from reviews in our visual summaries, we enhance the summaries by presenting the relevant content to a user. Moreover, we achieve it without the need for costly annotations. Our experiments, including human perceptual studies, demonstrate the superiority of our cross-modal approach, which we coin as CrossSummarizer over the no-personalization and image-based clustering baselines

    Text2Topic: Multi-Label Text Classification System for Efficient Topic Detection in User Generated Content with Zero-Shot Capabilities

    Full text link
    Multi-label text classification is a critical task in the industry. It helps to extract structured information from large amount of textual data. We propose Text to Topic (Text2Topic), which achieves high multi-label classification performance by employing a Bi-Encoder Transformer architecture that utilizes concatenation, subtraction, and multiplication of embeddings on both text and topic. Text2Topic also supports zero-shot predictions, produces domain-specific text embeddings, and enables production-scale batch-inference with high throughput. The final model achieves accurate and comprehensive results compared to state-of-the-art baselines, including large language models (LLMs). In this study, a total of 239 topics are defined, and around 1.6 million text-topic pairs annotations (in which 200K are positive) are collected on approximately 120K texts from 3 main data sources on Booking.com. The data is collected with optimized smart sampling and partial labeling. The final Text2Topic model is deployed on a real-world stream processing platform, and it outperforms other models with 92.9% micro mAP, as well as a 75.8% macro mAP score. We summarize the modeling choices which are extensively tested through ablation studies, and share detailed in-production decision-making steps

    MuMIC – Multimodal Embedding for Multi-Label Image Classification with Tempered Sigmoid

    No full text
    Multi-label image classification is a foundational topic in various domains. Multimodal learning approaches have recently achieved outstanding results in image representation and single-label image classification. For instance, Contrastive Language-Image Pretraining (CLIP) demonstrates impressive image-text representation learning abilities and is robust to natural distribution shifts. This success inspires us to leverage multimodal learning for multi-label classification tasks, and benefit from contrastively learnt pretrained models. We propose the Multimodal Multi-label Image Classification (MuMIC) framework, which utilizes a hardness-aware tempered sigmoid based Binary Cross Entropy loss function, thus enables the optimization on multi-label objectives and transfer learning on CLIP. MuMIC is capable of providing high classification performance, handling real-world noisy data, supporting zero-shot predictions, and producing domain-specific image embeddings. In this study, a total of 120 image classes are defined, and more than 140K positive annotations are collected on approximately 60K Booking.com images. The final MuMIC model is deployed on Booking.com Content Intelligence Platform, and it outperforms other state-of-the-art models with 85.6% GAP@10 and 83.8% GAP on all 120 classes, as well as a 90.1% macro mAP score across 32 majority classes. We summarize the modelling choices which are extensively tested through ablation studies. To the best of our knowledge, we are the first to adapt contrastively learnt multimodal pretraining for real-world multi-label image classification problems, and the innovation can be transferred to other domains
    corecore