6 research outputs found

    Carbohydrate improves exercise capacity but does not affect subcellular lipid droplet morphology, AMPK and p53 signalling in human skeletal muscle

    Get PDF
    We examined the effects of carbohydrate (CHO) feeding on lipid droplet (LD) morphology, muscle glycogen utilisation and exercise‐induced skeletal muscle cell signalling. After a 36 h CHO loading protocol and pre‐exercise meal (12 and 2 g kg–1, respectively), eight trained males ingested 0, 45 or 90 g CHO h–1 during 180 min cycling at lactate threshold followed by an exercise capacity test (150% lactate threshold). Muscle biopsies were obtained pre‐ and post‐completion of submaximal exercise. Exercise decreased (P 0.05). Exercise decreased LD number within central and peripheral regions of both type I and IIa fibres, though reduced LD size was exclusive to type I fibres. Exercise induced (all P 0.05). CHO increased exercise capacity where 90 g h–1 (233 ± 133 s) > 45 g h–1 (156 ± 66 s; P = 0.06) > 0 g h–1 (108 ± 54 s; P = 0.03). In conditions of high pre‐exercise CHO availability, we conclude CHO feeding does not influence exercise‐induced changes in LD morphology, glycogen utilisation or cell signalling pathways with regulatory roles in mitochondrial biogenesis

    Novel Cβ–Cγ Bond Cleavages of Tryptophan-Containing Peptide Radical Cations

    Get PDF
    In this study, we observed unprecedented cleavages of the Cβ–Cγ bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M•+) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M – 116]+ ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent Cβ–Cγ bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH – 43]+ and [WGGGH – 116]+, obtained from the CID of [LGGGH]•+ and [WGGGH]•+, respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind]•-2), in agreement with the CID data for [WGGGH]•+ and [W1-CH3GGGH]•+; replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from Cβ–Cγ bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the Cβ–Cγ bond and, therefore, decreases the dissociation energy barrier dramatically

    Biochemical Effects of Drugs Acting on the Central Nervous System

    No full text

    Di- and tripeptide transport in vertebrates: the contribution of teleost fish models

    No full text
    corecore