18,681 research outputs found

    A 43GHz VLBI mapping of SiO maser emission associated with Orion-KL IRC-2

    Get PDF
    A milliarcsecond resolution spot map of the SiO maser emission associated with IRC-2 in Orion-KL is presented. The two dominant groups of spectral features, near V(LRS) = -6 and 16 km/s, were observed in the 43 GHz, v = 1 to 0 transition of SiO, using a Mark III VLBI system. The 74 km baseline ran from Haystack Observatory in Westford, Massachusetts to Five College Radio Astronomy Observatory (FCRAO) in New Salem, Massachusetts. Five distinct maser features were observed: -8.5 to -6.5 km/s; -5 to -1.5 km/s; 12 to 13.5 km/s; 16.5 to 19 km/s; and 20 to 21 km/s (stellar velocity = 5 km/s). The relative positions were established, from an analysis of fringe phases, to an accuracy of about 5 milliarcseconds. All the features lay within an area of radius 0.08 arcseconds or 6x10(14) cm, at a distance of 500 pc. Previous interferometric studies were only able to measure the gross separation between the red and the blue shifted groups. Our measurement of the separation between these two gropus is consistent with those of the previous studies, indicating the persistence of these two centers of activity. The absolute positions of the masers with respect to IRC-2 are only known to an accuracy of about 1 arcsecond. It is assumed that IRC-2 is centered between the red shifted and the blue shifted maser features. The relative placement of these two groups of maser features agrees with observations of thermal emission from SO, which traces the outflow on a much larger scale. The SiO masers trace the neutral outflow from IRC-2 on the smallest scale yet observed

    New receivers for DS-SS in time variant multipath channels based on the PN alignment concept

    Get PDF
    We present new combined blind equalization and detection schemes for a DS-SS system. The new proposed algorithms improve the bit error rate compared to traditional RAKE receivers in time-variant channels with multipath. This improvement is obtained in both simulated and a real ionospheric HF link. Its very low computational complexity makes them suitable to be implemented in real receivers.Peer ReviewedPostprint (published version

    DSP-based ionospheric radiolink using DS-CDMA and on-line channel estimation

    Get PDF
    In this paper, a new blind multiuser detection algorithm is presented. It can both cancel multiuser interference and estimate the multipath channel response in a blind way. The method has been specially conceived for low coherence bandwidth channels such as the ionospheric channel and exhibits very low computational requirements. Real-time measurements from a fully digital HF radio-link are presented that confirm the reliability of the method for the ionospheric channel.Peer ReviewedPostprint (published version

    The asymmetric profile of the H76 alpha line emission from MWC349

    Get PDF
    MWC349 is an emission-line star found by Merrill, Humason and Burwell (1932). Braes, Habing and Schoenmaker (1972) discovered that it is a strong radio source. The radio emission originates in a massive ionized wind that is expanding with a velocity of about 50 km s(-1). Its continuum spectrum fits well a nu(0.6) power law from the cm wavelengths to the far-IR. Radio recombination line emission from the envelope of MWC349 was first detected by Altenhoff, Strittmatter and Wendker (1981). We have obtained good signal-to-noise ratio, Very Large Array observations of the H76 alpha radio recombination line from the ionized wind of MWC349. Our data reveal that the profile is markedly asymmetric, with a steep rise on the blue side. This asymmetry could be due to non-LTE effects in the formation and transfer of the line or to intrinsic asymmetries in the envelope. Our analysis suggests that most probably the peculiar profile is caused by a non-LTE enhancement of the line emission from the side of the envelope nearer to the observer. This asymmetry has the opposite sense than that observed in optical and IR recombination lines, where a different effect (absorption of the stellar continuum by the gas in the wind between the star and the observer) is known to be dominant, leading to the classic P Cygni profile. We propose that the profiles of the radio recombination lines from ionized stellar winds will have this characteristic shape, while optical and IR recombination lines are characterized by P Cygni-like profiles. Unfortunately, at present the detection of radio recombination lines from ionized stellar winds is only feasible for MWC349 and a few other objects

    Exact ground states of a staggered supersymmetric model for lattice fermions

    Get PDF
    We study a supersymmetric model for strongly interacting lattice fermions in the presence of a staggering parameter. The staggering is introduced as a tunable parameter in the manifestly supersymmetric Hamiltonian. We obtain analytic expressions for the ground states in the limit of small and large staggering for the model on the class of doubly decorated lattices. On this type of lattice there are two ground states, each with a different density. In one limit we find these ground states to be a simple Wigner crystal and a valence bond solid (VBS) state. In the other limit we find two types of quantum liquids. As a special case, we investigate the quantum liquid state on the one dimensional chain in detail. It is characterized by a massless kink that separates two types of order.Comment: 21 pages, 6 figures, v2: largely rewritten version with more emphasis on physical interpretatio

    Outflow 20--2000 AU from a High-Mass Protostar in W51-IRS2

    Full text link
    We present the results of the first high angular resolution observations of SiO maser emission towards the star forming region W51-IRS2 made with the Very Large Array (VLA) and Very Long Baseline Array (VLBA). Our images of the water maser emission in W51-IRS2 reveal two maser complexes bracketing the SiO maser source. One of these water maser complexes appears to trace a bow shock whose opening angle is consistent with the opening angle observed in the distribution of SiO maser emission. A comparison of our water maser image with an image constructed from data acquired 19 years earlier clearly shows the persistence and motion of this bow shock. The proper motions correspond to an outflow velocity of 80 km/s, which is consistent with the data of 19 years ago (that spanned 2 years). We have discovered a two-armed linear structure in the SiO maser emission on scales of ~25 AU, and we find a velocity gradient on the order of 0.1 km/s/AU along the arms. We propose that the SiO maser source traces the limbs of an accelerating bipolar outflow close to an obscured protostar. We estimate that the outflow makes an angle of <20 degrees with respect to the plane of the sky. Our measurement of the acceleration is consistent with a reported drift in the line-of-sight velocity of the W51 SiO maser source.Comment: 19 pages, 5 figures (including 3 color). Accepted for publication in ApJ (April 1, 2001 issue
    • …
    corecore