18 research outputs found

    Circulation of Different Lineages of Dengue Virus Type 2 in Central America, Their Evolutionary Time-Scale and Selection Pressure Analysis

    Get PDF
    Dengue is caused by any of the four serotypes of dengue virus (DENV-1 to 4). Each serotype is genetically distant from the others, and each has been subdivided into different genotypes based on phylogenetic analysis. The study of dengue evolution in endemic regions is important since the diagnosis is often made by nucleic acid amplification tests, which depends upon recognition of the viral genome target, and natural occurring mutations can affect the performance of these assays. Here we report for the first time a detailed study of the phylogenetic relationships of DENV-2 from Central America, and report the first fully sequenced DENV-2 strain from Guatemala. Our analysis of the envelope (E) protein and of the open reading frame of strains from Central American countries, between 1999 and 2009, revealed that at least two lineages of the American/Asian genotype of DENV-2 have recently circulated in that region. In occasions the co-circulation of these lineages may have occurred and that has been suggested to play a role in the observed increased severity of clinical cases. Our time-scale analysis indicated that the most recent common ancestor for Central American DENV-2 of the American/Asian genotype existed about 19 years ago. Finally, we report positive selection in DENV-2 from Central America in codons of the genes encoding for C, E, NS2A, NS3, and NS5 proteins. Some of these identified codons are novel findings, described for the first time for any of the DENV-2 genotypes

    Influenza A Viruses from Wild Birds in Guatemala Belong to the North American Lineage

    Get PDF
    The role wild bird species play in the transmission and ecology of avian influenza virus (AIV) is well established; however, there are significant gaps in our understanding of the worldwide distribution of these viruses, specifically about the prevalence and/or significance of AIV in Central and South America. As part of an assessment of the ecology of AIV in Guatemala, we conducted active surveillance in wild birds on the Pacific and Atlantic coasts. Cloacal and tracheal swab samples taken from resident and migratory wild birds were collected from February 2007 to January 2010.1913 samples were collected and virus was detected by real time RT-PCR (rRT-PCR) in 28 swab samples from ducks (Anas discors). Virus isolation was attempted for these positive samples, and 15 isolates were obtained from the migratory duck species Blue-winged teal. The subtypes identified included H7N9, H11N2, H3N8, H5N3, H8N4, and H5N4. Phylogenetic analysis of the viral sequences revealed that AIV isolates are highly similar to viruses from the North American lineage suggesting that bird migration dictates the ecology of these viruses in the Guatemalan bird population

    Marburg virus disease outbreak in Kween District Uganda, 2017: Epidemiological and laboratory findings.

    Get PDF
    INTRODUCTION: In October 2017, a blood sample from a resident of Kween District, Eastern Uganda, tested positive for Marburg virus. Within 24 hour of confirmation, a rapid outbreak response was initiated. Here, we present results of epidemiological and laboratory investigations. METHODS: A district task force was activated consisting of specialised teams to conduct case finding, case management and isolation, contact listing and follow up, sample collection and testing, and community engagement. An ecological investigation was also carried out to identify the potential source of infection. Virus isolation and Next Generation sequencing were performed to identify the strain of Marburg virus. RESULTS: Seventy individuals (34 MVD suspected cases and 36 close contacts of confirmed cases) were epidemiologically investigated, with blood samples tested for MVD. Only four cases met the MVD case definition; one was categorized as a probable case while the other three were confirmed cases. A total of 299 contacts were identified; during follow- up, two were confirmed as MVD. Of the four confirmed and probable MVD cases, three died, yielding a case fatality rate of 75%. All four cases belonged to a single family and 50% (2/4) of the MVD cases were female. All confirmed cases had clinical symptoms of fever, vomiting, abdominal pain and bleeding from body orifices. Viral sequences indicated that the Marburg virus strain responsible for this outbreak was closely related to virus strains previously shown to be circulating in Uganda. CONCLUSION: This outbreak of MVD occurred as a family cluster with no additional transmission outside of the four related cases. Rapid case detection, prompt laboratory testing at the Uganda National VHF Reference Laboratory and presence of pre-trained, well-prepared national and district rapid response teams facilitated the containment and control of this outbreak within one month, preventing nationwide and global transmission of the disease

    Positive species for influenza type A by rRT-PCR and viral isolates obtained in this study.

    No full text
    *<p>Percentage of positive samples obtained by real-time RT-PCR (rRT-PCR) and Virus Isolation (VI) based on the total number of sampled birds.</p><p>N/D: Non-Determined.</p

    Phylogenetic trees for internal gene segments PB2, PB1, and PA.

    No full text
    <p>All trees were generated in PAUP 4.0b10 using Neighbor-Joining method with 1000 bootstrap replicates (bootstrap values above 70% are shown). Scale bar on the bottom-left indicates number of nucleotide substitutions per site.</p

    Genome constellations of AIVs obtained from wild birds in Guatemala.

    No full text
    <p>Nucleotide percent similarities are shown. The different colors represent different clades supported by bootstrap values >70%. *Isolate CIP049-01 was used as reference to estimate sequence percent similarities.</p

    Phylogenetic trees for N2 and N8 NA genes.

    No full text
    <p>Trees were generated in PAUP 4.0b10 using Neighbor-Joining method with 1000 bootstrap replicates (bootstrap values above 70% are shown). Scale bar on the bottom-left indicates number of nucleotide substitutions per site.</p

    Phylogenetic trees for H3, H8 and H11 HA genes.

    No full text
    <p>Trees were generated in PAUP 4.0b10 using the Neighbor-Joining method with 1000 bootstrap replicates (bootstrap values above 70% are shown). Scale bar on the bottom-left indicates number of nucleotide substitutions per site.</p

    Phylogenetic trees for internal gene segments NP, M and NS.

    No full text
    <p>All trees were generated in PAUP 4.0b10 using Neighbor-Joining method with 1000 bootstrap replicates (bootstrap values above 70% are shown). Scale bar on the bottom-left indicates number of nucleotide substitutions per site.</p
    corecore