7 research outputs found

    Chronic Exposure to Arsenic and Markers of Cardiometabolic Risk: A Cross-Sectional Study in Chihuahua, Mexico

    Get PDF
    BackgroundExposure to arsenic (As) concentrations in drinking water > 150 μg/L has been associated with risk of diabetes and cardiovascular disease, but little is known about the effects of lower exposures.ObjectiveThis study aimed to examine whether moderate As exposure, or indicators of individual As metabolism at these levels of exposure, are associated with cardiometabolic risk.MethodsWe analyzed cross-sectional associations between arsenic exposure and multiple markers of cardiometabolic risk using drinking-water As measurements and urinary As species data obtained from 1,160 adults in Chihuahua, Mexico, who were recruited in 2008–2013. Fasting blood glucose and lipid levels, the results of an oral glucose tolerance test, and blood pressure were used to characterize cardiometabolic risk. Multivariable logistic, multinomial, and linear regression were used to assess associations between cardiometabolic outcomes and water As or the sum of inorganic and methylated As species in urine.ResultsAfter multivariable adjustment, concentrations in the second quartile of water As (25.5 to < 47.9 μg/L) and concentrations of total speciated urinary As (< 55.8 μg/L) below the median were significantly associated with elevated triglycerides, high total cholesterol, and diabetes. However, moderate water and urinary As levels were also positively associated with HDL cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia were higher among individuals with higher proportions of dimethylarsenic in urine.ConclusionsModerate exposure to As may increase cardiometabolic risk, particularly in individuals with high proportions of urinary dimethylarsenic. In this cohort, As exposure was associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia, and cholesterolemia), but exposure was also associated with higher rather than lower HDL cholesterol.CitationMendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104–111; http://dx.doi.org/10.1289/ehp.140874

    Association Between Variants in Arsenic (+3 Oxidation State) Methyltranserase ( AS3MT ) and Urinary Metabolites of Inorganic Arsenic: Role of Exposure Level

    Get PDF
    Variants in AS3MT, the gene encoding arsenic (+3 oxidation state) methyltranserase, have been shown to influence patterns of inorganic arsenic (iAs) metabolism. Several studies have suggested that capacity to metabolize iAs may vary depending on levels of iAs exposure. However, it is not known whether the influence of variants in AS3MT on iAs metabolism also vary by level of exposure. We investigated, in a population of Mexican adults exposed to drinking water As, whether associations between 7 candidate variants in AS3MT and urinary iAs metabolites were consistent with prior studies, and whether these associations varied depending on the level of exposure. Overall, associations between urinary iAs metabolites and AS3MT variants were consistent with the literature. Referent genotypes, defined as the genotype previously associated with a higher percentage of urinary dimethylated As (DMAs%), were associated with significant increases in the DMAs% and ratio of DMAs to monomethylated As (MAs), and significant reductions in MAs% and iAs%. For 3 variants, associations between genotypes and iAs metabolism were significantly stronger among subjects exposed to water As >50 versus ≤50 ppb (water As X genotype interaction P < .05). In contrast, for 1 variant (rs17881215), associations were significantly stronger at exposures ≤50 ppb. Results suggest that iAs exposure may influence the extent to which several AS3MT variants affect iAs metabolism. The variants most strongly associated with iAs metabolism—and perhaps with susceptibility to iAs-associated disease—may vary in settings with exposure level

    Associations between Arsenic Species in Exfoliated Urothelial Cells and Prevalence of Diabetes among Residents of Chihuahua, Mexico

    Get PDF
    Background: A growing number of studies link chronic exposure to inorganic arsenic (iAs) with the risk of diabetes. Many of these studies assessed iAs exposure by measuring arsenic (As) species in urine. However, this approach has been criticized because of uncertainties associated with renal function and urine dilution in diabetic individuals

    Metabolomic Characteristics of Arsenic-Associated Diabetes in a Prospective Cohort in Chihuahua, Mexico

    Get PDF
    Chronic exposure to inorganic arsenic (iAs) has been linked to an increased risk of diabetes, yet the specific disease phenotype and underlying mechanisms are poorly understood. In the present study we set out to identify iAs exposure-associated metabolites with altered abundance in nondiabetic and diabetic individuals in an effort to understand the relationship between exposure, metabolomic response, and disease status. A nested study design was used to profile metabolomic shifts in urine and plasma collected from 90 diabetic and 86 nondiabetic individuals matched for varying iAs concentrations in drinking water, body mass index, age, and sex. Diabetes diagnosis was based on measures of fasting plasma glucose and 2-h blood glucose. Multivariable models were used to identify metabolites with altered abundance associated with iAs exposure among diabetic and nondiabetic individuals. A total of 132 metabolites were identified to shift in urine or plasma in response to iAs exposure characterized by the sum of iAs metabolites in urine (U-tAs). Although many metabolites were altered in both diabetic and nondiabetic 35 subjects, diabetic individuals displayed a unique response to iAs exposure with 59 altered metabolites including those that play a role in tricarboxylic acid cycle and amino acid metabolism. Taken together, these data highlight the broad impact of iAs exposure on the human metabolome, and demonstrate some specificity of the metabolomic response between diabetic and nondiabetic individuals. These data may provide novel insights into the mechanisms and phenotype of diabetes associated with iAs exposure

    Associations between Arsenic Species in Exfoliated Urothelial Cells and Prevalence of Diabetes among Residents of Chihuahua, Mexico

    No full text
    Background: A growing number of studies link chronic exposure to inorganic arsenic (iAs) with the risk of diabetes. Many of these studies assessed iAs exposure by measuring arsenic (As) species in urine. However, this approach has been criticized because of uncertainties associated with renal function and urine dilution in diabetic individuals. Objectives: Our goal was to examine associations between the prevalence of diabetes and concentrations of As species in exfoliated urothelial cells (EUC) as an alternative to the measures of As in urine. Methods: We measured concentrations of trivalent and pentavalent iAs methyl-As (MAs) and dimethyl-As (DMAs) species in EUC from 374 residents of Chihuahua, Mexico, who were exposed to iAs in drinking water. We used fasting plasma glucose, glucose tolerance tests, and self-reported diabetes diagnoses or medication to identify diabetic participants. Associations between As species in EUC and diabetes were estimated using logistic and linear regression, adjusting for age, sex, and body mass index. Results: Interquartile-range increases in trivalent, but not pentavalent, As species in EUC were positively and significantly associated with diabetes, with ORs of 1.57 (95% CI: 1.19, 2.07) for iAs(III), 1.63 (1.24, 2.15) for MAs(III), and 1.31 (0.96, 1.84) for DMAs(III). DMAs/MAs and DMAs/iAs ratios were negatively associated with diabetes (OR = 0.62; 95% CI: 0.47, 0.83 and OR = 0.72; 95% CI: 0.55, 0.96, respectively). Conclusions: Our data suggest that uncertainties associated with measures of As species in urine may be avoided by using As species in EUC as markers of iAs exposure and metabolism. Our results provide additional support to previous findings suggesting that trivalent As species may be responsible for associations between diabetes and chronic iAs exposure. Citation: Currier JM, Ishida MC, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Gutiérrez-Torres DS, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Del Razo LM, García-Vargas GG, Saunders RJ, Drobná Z, Fry RC, Matoušek T, Buse JB, Mendez MA, Loomis D, Stýblo M. 2014. Associations between arsenic species in exfoliated urothelial cells and prevalence of diabetes among residents of Chihuahua, Mexico. Environ Health Perspect 122:1088–1094; http://dx.doi.org/10.1289/ehp.130775

    Metabolomic Characteristics of Arsenic-Associated Diabetes in a Prospective Cohort in Chihuahua, Mexico

    No full text
    Chronic exposure to inorganic arsenic (iAs) has been linked to an increased risk of diabetes, yet the specific disease phenotype and underlying mechanisms are poorly understood. In the present study we set out to identify iAs exposure-associated metabolites with altered abundance in nondiabetic and diabetic individuals in an effort to understand the relationship between exposure, metabolomic response, and disease status. A nested study design was used to profile metabolomic shifts in urine and plasma collected from 90 diabetic and 86 nondiabetic individuals matched for varying iAs concentrations in drinking water, body mass index, age, and sex. Diabetes diagnosis was based on measures of fasting plasma glucose and 2-h blood glucose. Multivariable models were used to identify metabolites with altered abundance associated with iAs exposure among diabetic and nondiabetic individuals. A total of 132 metabolites were identified to shift in urine or plasma in response to iAs exposure characterized by the sum of iAs metabolites in urine (U-tAs). Although many metabolites were altered in both diabetic and nondiabetic 35 subjects, diabetic individuals displayed a unique response to iAs exposure with 59 altered metabolites including those that play a role in tricarboxylic acid cycle and amino acid metabolism. Taken together, these data highlight the broad impact of iAs exposure on the human metabolome, and demonstrate some specificity of the metabolomic response between diabetic and nondiabetic individuals. These data may provide novel insights into the mechanisms and phenotype of diabetes associated with iAs exposure

    Chronic Exposure to Arsenic and Markers of Cardiometabolic Risk: A Cross-Sectional Study in Chihuahua, Mexico

    No full text
    BACKGROUND: Exposure to arsenic (As) concentrations in drinking water > 150 μg/L has been associated with risk of diabetes and cardiovascular disease, but little is known about the effects of lower exposures. OBJECTIVE: This study aimed to examine whether moderate As exposure, or indicators of individual As metabolism at these levels of exposure, are associated with cardiometabolic risk. METHODS: We analyzed cross-sectional associations between arsenic exposure and multiple markers of cardiometabolic risk using drinking-water As measurements and urinary As species data obtained from 1,160 adults in Chihuahua, Mexico, who were recruited in 2008–2013. Fasting blood glucose and lipid levels, the results of an oral glucose tolerance test, and blood pressure were used to characterize cardiometabolic risk. Multivariable logistic, multinomial, and linear regression were used to assess associations between cardiometabolic outcomes and water As or the sum of inorganic and methylated As species in urine. RESULTS: After multivariable adjustment, concentrations in the second quartile of water As (25.5 to < 47.9 μg/L) and concentrations of total speciated urinary As (< 55.8 μg/L) below the median were significantly associated with elevated triglycerides, high total cholesterol, and diabetes. However, moderate water and urinary As levels were also positively associated with HDL cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia were higher among individuals with higher proportions of dimethylarsenic in urine. CONCLUSIONS: Moderate exposure to As may increase cardiometabolic risk, particularly in individuals with high proportions of urinary dimethylarsenic. In this cohort, As exposure was associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia, and cholesterolemia), but exposure was also associated with higher rather than lower HDL cholesterol. CITATION: Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104–111; http://dx.doi.org/10.1289/ehp.140874
    corecore