131 research outputs found

    An observationally-driven kinetic approach to coronal heating

    Full text link
    Coronal heating through the explosive release of magnetic energy remains an open problem in solar physics. Recent hydrodynamical models attempt an investigation by placing swarms of 'nanoflares' at random sites and times in modeled one-dimensional coronal loops. We investigate the problem in three dimensions, using extrapolated coronal magnetic fields of observed solar active regions. We apply a nonlinear force-free field extrapolation above an observed photospheric magnetogram of NOAA active region (AR) 11158. We then determine the locations, energy contents, and volumes of 'unstable' areas, namely areas prone to releasing magnetic energy due to locally accumulated electric current density. Statistical distributions of these volumes and their fractal dimension are inferred, investigating also their dependence on spatial resolution. Further adopting a simple resistivity model, we infer the properties of the fractally distributed electric fields in these volumes. Next, we monitor the evolution of 10^5 particles (electrons and ions) obeying an initial Maxwellian distribution with a temperature of 10 eV, by following their trajectories and energization when subjected to the resulting electric fields. For computational convenience, the length element of the magnetic-field extrapolation is 1 arcsec, much coarser than the particles collisional mean free path in the low corona. The presence of collisions traps the bulk of the plasma around the unstable volumes, or current sheets (UCS), with only a tail of the distribution gaining substantial energy. Assuming that the distance between UCS is similar to the collisional mean free path we find that the low active-region corona is heated to 100-200 eV, corresponding to temperatures exceeding 2 MK, within tens of seconds for electrons and thousands of seconds for ions. Fractally distributed, nanoflare-triggening fragmented UCS ...Comment: accepted by A&

    Additivity of relative magnetic helicity in finite volumes

    Get PDF
    CONTEXT: Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity. For that reason, it is often invoked as the most relevant constraint on the dynamical evolution of plasmas in complex systems, such as solar and stellar dynamos, photospheric flux emergence, solar eruptions, and relaxation processes in laboratory plasmas. However, such studies often indirectly imply that relative magnetic helicity in a given spatial domain can be algebraically split into the helicity contributions of the composing subvolumes, in other words that it is an additive quantity. A limited number of very specific applications have shown that this is not the case. AIMS: Progress in understanding the nonadditivity of relative magnetic helicity requires removal of restrictive assumptions in favor of a general formalism that can be used in both theoretical investigations and numerical applications. METHODS: We derive the analytical gauge-invariant expression for the partition of relative magnetic helicity between contiguous finite volumes, without any assumptions on either the shape of the volumes and interface, or the employed gauge. RESULTS: We prove the nonadditivity of relative magnetic helicity in finite volumes in the most general, gauge-invariant formalism, and verify this numerically. We adopt more restrictive assumptions to derive known specific approximations, which yields a unified view of the additivity issue. As an example, the case of a flux rope embedded in a potential field shows that the nonadditivity term in the partition equation is, in general, non-negligible. CONCLUSIONS: The nonadditivity of relative magnetic helicity can potentially be a serious impediment to the application of relative helicity conservation as a constraint on the complex dynamics of magnetized plasmas. The relative helicity partition formula can be applied to numerical simulations to precisely quantify the effect of nonadditivity on global helicity budgets of complex physical processes

    Magnetic Helicity Evolution and Eruptive Activity in NOAA Active Region 11158

    Get PDF
    Coronal mass ejections are among the Sun’s most energetic activity events yet the physical mechanisms that lead to their occurrence are not yet fully understood. They can drive major space weather impacts at Earth, so knowing why and when these ejections will occur is required for accurate space weather forecasts. In this study we use a 4 day time series of a quantity known as the helicity ratio, ∣H J ∣/∣H V ∣ (helicity of the current-carrying part of the active region field to the total relative magnetic helicity within the volume), which has been computed from nonlinear force-free field extrapolations of NOAA active region 11158. We compare the evolution of ∣H J ∣/∣H V ∣ with the activity produced in the corona of the active region and show this ratio can be used to indicate when the active region is prone to eruption. This occurs when ∣H J ∣/∣H V ∣ exceeds a value of 0.1, as suggested by previous studies. We find the helicity ratio variations to be more pronounced during times of strong flux emergence, collision and reconnection between fields of different bipoles, shearing motions, and reconfiguration of the corona through failed and successful eruptions. When flux emergence, collision, and shearing motions have lessened, the changes in helicity ratio are somewhat subtle despite the occurrence of significant eruptive activity during this time

    In which shell-type SNRs should we look for gamma-rays and neutrinos from p-p collisions?

    Full text link
    We present a simple analytic model for the various contributions to the non-thermal emission from shell type SNRs, and show that this model's results reproduce well the results of previous detailed calculations. We show that the \geq 1 TeV gamma ray emission from the shell type SNRs RX J1713.7-3946 and RX J0852.0-4622 is dominated by inverse-Compton scattering of CMB photons (and possibly infra-red ambient photons) by accelerated electrons. Pion decay (due to proton-proton collisions) is shown to account for only a small fraction, \lesssim10^-2, of the observed flux, as assuming a larger fractional contribution would imply nonthermal radio and X-ray synchrotron emission and thermal X-ray Bremsstrahlung emission that far exceed the observed radio and X-ray fluxes. Models where pion decay dominates the \geq 1 TeV flux avoid the implied excessive synchrotron emission (but not the implied excessive thermal X-ray Bremsstrahlung emission) by assuming an extremely low efficiency of electron acceleration, K_ep \lesssim 10^-4 (K_ep is the ratio of the number of accelerated electrons and the number of accelerated protons at a given energy). We argue that observations of SNRs in nearby galaxies imply a lower limit of K_ep \gtrsim 10^-3, and thus rule out K_ep values \lesssim 10^-4 (assuming that SNRs share a common typical value of K_ep). It is suggested that SNRs with strong thermal X-ray emission, rather than strong non-thermal X-ray emission, are more suitable candidates for searches of gamma rays and neutrinos resulting from proton-proton collisions. In particular, it is shown that the neutrino flux from the SNRs above is probably too low to be detected by current and planned neutrino observatories (Abridged).Comment: 13 pages, 1 figure, accepted for publication in JCAP, minor revision

    Evaluation of magnetic resonance imaging abnormalities in juvenile onset neuropsychiatric systemic lupus erythematosus.

    Get PDF
    The aim of this study was to describe the abnormalities identified with conventional MRI in children with neuropsychiatric systemic lupus erythematosus (NPSLE). This was single-centre (Great Ormond Street Hospital, London) retrospective case series of patients with juvenile NPSLE seen in 2003-2013. Brain MR images of the first episode of active NPSLE were reviewed. All patients fulfilled the 1999 ACR case definitions for NPSLE syndromes. Presenting neuropsychiatric manifestations, immunological findings and treatment are reported. Results are expressed as median and ranges or percentages. Fisher's exact test was used to identify clinical predictors of abnormal MRI. A total of 27 patients (22 females), median age 11 years (4-15), were identified. Presenting clinical symptoms included the following: headaches (85.1 %), mood disorder/depression (62.9 %), seizures (22.2 %), acute psychosis (18.5 %), cognitive dysfunction (14.8 %), movement disorder (14.8 %), acute confusional state (14.8 %), aseptic meningitis (7.4 %), demyelinating syndrome (3.7 %), myelopathy (3.7 %), dysautonomia (3.7 %) and cranial neuropathy (3.7 %). The principal MR findings were as follows: (1) absence of MRI abnormalities despite signs and symptoms of active NPSLE (59 %); (2) basilar artery territory infarction (3 %); (3) focal white matter hyperintensities on T2-weighted imaging (33 %); (4) cortical grey matter lesions (3 %); and (5) brain atrophy (18.5 %). The presence of an anxiety disorder strongly associated with abnormal MRI findings (p = 0.008). In over half the children with NPSLE, no conventional MRI abnormalities were observed; white matter hyperintensities were the most commonly described abnormalities. Improved MR techniques coupled with other alternative diagnostic imaging modalities may improve the detection rate of brain involvement in juvenile NPSLE

    Th17 Cytokines Disrupt the Airway Mucosal Barrier in Chronic Rhinosinusitis

    Get PDF
    Copyright © 2016 Mahnaz Ramezanpour et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Cytokine mediated changes in paracellular permeability contribute to a multitude of pathological conditions including chronic rhinosinusitis (CRS). The purpose of this study was to investigate the effect of interferons and of Th1, Th2, and Th17 cytokines on respiratory epithelium barrier function. Cytokines and interferons were applied to the basolateral side of air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs) from CRS with nasal polyp patients. Transepithelial electrical resistance (TEER) and permeability of FITC-conjugated dextrans were measured over time. Additionally, the expression of the tight junction protein Zona Occludens-1 (ZO-1) was examined via immunofluorescence. Data was analysed using ANOVA, followed by Tukey HSD post hoc test. Our results showed that application of interferons and of Th1 or Th2 cytokines did not affect the mucosal barrier function. In contrast, the Th17 cytokines IL-17, IL-22, and IL-26 showed a significant disruption of the epithelial barrier, evidenced by a loss of TEER, increased paracellular permeability of FITC-dextrans, and discontinuous ZO-1 immunolocalisation. These results indicate that Th17 cytokines may contribute to the development of CRSwNP by promoting a leaky mucosal barrier

    Relacorilant, a Selective Glucocorticoid Receptor Modulator in Development for the Treatment of Patients With Cushing Syndrome, Does Not Cause Prolongation of the Cardiac QT Interval

    Get PDF
    Objective: To assess the effect of relacorilant, a selective glucocorticoid receptor modulator under investigation for the treatment of patients with endogenous hypercortisolism (Cushing syndrome [CS]), on the heart rate–corrected QT interval (QTc). Methods: Three clinical studies of relacorilant were included: (1) a first-in-human, randomized, placebo-controlled, ascending-dose (up to 500 mg of relacorilant) study in healthy volunteers; (2) a phase 1 placebo- and positive-controlled thorough QTc (TQT) study of 400 and 800 mg of relacorilant in healthy volunteers; and (3) a phase 2, open-label study of up to 400 mg of relacorilant administered daily for up to 16 weeks in patients with CS. Electrocardiogram recordings were taken, and QTc change from baseline (ΔQTc) was calculated. The association of plasma relacorilant concentration with the effect on QTc in healthy volunteers was assessed using linear mixed-effects modeling. Results: Across all studies, no notable changes in the electrocardiogram parameters were observed. At all time points and with all doses of relacorilant, including supratherapeutic doses, ΔQTc was small, generally negative, and, in the placebo-controlled studies, similar to placebo. In the TQT study, placebo-corrected ΔQTc with relacorilant was small and negative, whereas placebo-corrected ΔQTc with moxifloxacin positive control showed rapid QTc prolongation. These results constituted a negative TQT study. The model-estimated slopes of the concentration-QTc relationship were slightly negative, excluding an association of relacorilant with prolonged QTc. Conclusion: At all doses studied, relacorilant consistently demonstrated a lack of QTc prolongation in healthy volunteers and patients with CS, including in the TQT study. Ongoing phase 3 studies will help further establish the overall benefit-risk profile of relacorilant.</p
    corecore