3,715 research outputs found
Internal Josephson Oscillations for Distinct Momenta Bose-Einstein Condensates
The internal Josephson oscillations between an atomic Bose-Einstein
condensate (BEC) and a molecular one are studied for atoms in a square optical
lattice subjected to a staggered gauge field. The system is described by a
Bose-Hubbard model with complex and anisotropic hopping parameters that are
different for each species, i.e., atoms and molecules. When the flux per
plaquette for each species is small, the system oscillates between two
conventional zero-momentum condensates. However, there is a regime of
parameters in which Josephson oscillations between a vortex-carrying atomic
condensate (finite momentum BEC) and a conventional zero-momentum molecular
condensate may be realized. The experimental observation of the oscillations
between these qualitatively distinct BEC's is possible with state-of-the-art
Ramsey interference techniques.Comment: 8 pages, 6 figure
Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor
We demonstrate that two-dimensional chiral superconductors on curved surfaces
spontaneously develop magnetic flux. This geometric Meissner effect provides an
unequivocal signature of chiral super- conductivity, which could be observed in
layered materials under stress. We also employ the effect to explain some
puzzling questions related to the location of zero-energy Majorana modes
Interaction-induced chiral p_x \pm i p_y superfluid order of bosons in an optical lattice
The study of superconductivity with unconventional order is complicated in
condensed matter systems by their extensive complexity. Optical lattices with
their exceptional precision and control allow one to emulate superfluidity
avoiding many of the complications of condensed matter. A promising approach to
realize unconventional superfluid order is to employ orbital degrees of freedom
in higher Bloch bands. In recent work, indications were found that bosons
condensed in the second band of an optical chequerboard lattice might exhibit
p_x \pm i p_y order. Here we present experiments, which provide strong evidence
for the emergence of p_x \pm i p_y order driven by the interaction in the local
p-orbitals. We compare our observations with a multi-band Hubbard model and
find excellent quantitative agreement
Magnetic susceptibility anisotropies in a two-dimensional quantum Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions
The magnetic and thermodynamic properties of the two-dimensional quantum
Heisenberg antiferromagnet that incorporates both a Dzyaloshinskii-Moriya and
pseudo-dipolar interactions are studied within the framework of a generalized
nonlinear sigma model (NLSM). We calculate the static uniform susceptibility
and sublattice magnetization as a function of temperature and we show that: i)
the magnetic-response is anisotropic and differs qualitatively from the
expected behavior of a conventional easy-axis QHAF; ii) the Neel second-order
phase transition becomes a crossover, for a magnetic field B perpendicular to
the CuO(2) layers. We provide a simple and clear explanation for all the
recently reported unusual magnetic anisotropies in the low-field susceptibility
of La(2)CuO(4), L. N. Lavrov et al., Phys. Rev. Lett. 87, 017007 (2001), and we
demonstrate explicitly why La(2)CuO(4) can not be classified as an ordinary
easy-axis antiferromagnet.Comment: 6 pages, 3 figures, Revtex4, accepted for publication in Phys. Rev.
Natural variability of lotic Mediterranean ecosystems or wildfire perturbations: who will win?
This study evaluates the impacts of wildfires in lotic Mediterranean ecosystems. It was carried out at Monchique ridge after big wildfires occurred during 2002 and 2003. Deferential impacts were evaluated comparing historical results obtained before the wildfires (1999 and 2001), with the post fire ones (2006 and 2007). Physical and chemical parameters of the water, habitat morphology, diatoms, macrophytes, macroinvertebrates and fishes were evaluated at 10 collecting places, before and after wildfires. High recovering rates were observed to the vegetation, but it is still possible to found fire impacts over macrophytes and river morphology. Wildfires, contributed to canopy decrease and, consequently to the growth of plants that usually are controlled by shadow. As a result, vegetation biodiversity tend to increase. River banks tend also to be invaded by terrestrial plants. Higher post fires recover rates were observed to the more aquatic communities (diatoms, macroinvertebrates and fishes). For those communities, comparing spring situations before and after the fires no substantial differences were observed. Sometimes differences between consecutive years are even higher. So it can be concluded that magnitude of wildfire impacts is less than the natural inter-annual variability of Mediterranean rivers. Long-term effects of forest fires, resulting from large woody debries, were also detected by morphological alterations, like debries dams. Habitat diversity increase and impacts on aquatic communities are expected
Topological Defects and the Spin Glass Phase of Cuprates
We propose that the spin glass phase of cuprates is due to the proliferation
of topological defects of a spiral distortion of the antiferromagnet order. Our
theory explains straightforwardly the simultaneous existence of short range
incommensurate magnetic correlations and complete a-b symmetry breaking in this
phase. We show via a renormalization group calculation that the collinear
O(3)/O(2) symmetry is unstable towards the formation of local non-collinear
correlations. A critical disorder strength is identified beyond which
topological defects proliferate already at zero temperature.Comment: 7 pages, 2 figures. Final version with some changes and one replaced
figur
The impact of media pressure on corporate sustainability in the cement industry: a Portuguese case study
In this study we examine the sustainability reporting practices and sustainability strategies of a leading Portuguese cement company. The Portuguese cement industry had to deal since 1997 with scrutiny and pressure because of its involvement in co-incineration of hazardous industrial waste. Grounded on a lens of analysis combining legitimacy theory and media agenda-setting theory and based on a content analysis of sustainability reports and semi-structured interviews, we analyse the strategies used by the company to deal with said scrutiny and pressure and present its sustainability performance. Media pressure does seem to have impacted sustainability reporting and sustainability strategies as tools for the company to restore its legitimacy. Findings generally suggest that strategies of communication designed to legitimate the company actions were used. In particular, we suggest that the company managed its legitimacy by using simultaneously two sustainability reporting strategies: one of image enhancement and other of avoidance of threatening topics.info:eu-repo/semantics/publishedVersio
Fractional Landau-Lifshitz-Gilbert equation
The dynamics of a magnetic moment or spin are of high interest to applications in technology. Dissipation in these systems is therefore of importance for improvement of efficiency of devices, such as the ones proposed in spintronics. A large spin in a magnetic field is widely assumed to be described by the Landau-Lifshitz-Gilbert (LLG) equation, which includes a phenomenological Gilbert damping. Here, we couple a large spin to a bath and derive a generic (non-)Ohmic damping term for the low-frequency range using a Caldeira-Leggett model. This leads to a fractional LLG equation, where the first-order derivative Gilbert damping is replaced by a fractional derivative of order sϵR≥0. We show that the parameter s can be determined from a ferromagnetic resonance experiment, where the resonance frequency and linewidth no longer scale linearly with the effective field strength
- …