2 research outputs found

    Robust and General Model to Forecast the Heat Transfer Coefficient for Flow Condensation in Multi Port Mini/Micro-Channels

    No full text
    A general correlation for predicting the two-phase heat transfer coefficient (HTC) during condensation inside multi-port mini/micro-channels was presented. The model was obtained by correlating the two-phase multiplier, φtp with affecting parameters using the genetic programming (GP) method. An extensive database containing 3503 experimental data samples was gathered from 21 different sources, including a broad range of operating parameters. The newly obtained correlation fits the broad range of measured data analyzed with an average absolute relative deviation (AARD) of 16.87% and estimates 84.73% of analyzed data points with a relative error of less than 30%. Evaluation of previous correlations was also conducted using the same database. They showed the AARD values ranging from 36.94% to 191.19%. However, the GP model provides more accurate results, AARD lower than 17%, by considering the surface tension effects. Finally, the effect of various operating parameters on the HTC was studied using the proposed correlation

    Robust and General Model to Forecast the Heat Transfer Coefficient for Flow Condensation in Multi Port Mini/Micro‐Channels

    Get PDF
    A general correlation for predicting the two‐phase heat transfer coefficient (HTC) during condensation inside multi‐port mini/micro‐channels was presented. The model was obtained by correlating the two‐phase multiplier, φtp with affecting parameters using the genetic programming (GP) method. An extensive database containing 3503 experimental data samples was gathered from 21 different sources, including a broad range of operating parameters. The newly obtained correlation fits the broad range of measured data analyzed with an average absolute relative deviation (AARD) of 16.87% and estimates 84.73% of analyzed data points with a relative error of less than 30%. Evaluation of previous correlations was also conducted using the same database. They showed the AARD values ranging from 36.94% to 191.19%. However, the GP model provides more accurate results, AARD lower than 17%, by considering the surface tension effects. Finally, the effect of various operating parameters on the HTC was studied using the proposed correlation
    corecore