6 research outputs found

    Defeating Antibiotic- and Phage-Resistant Enterococcus faecalis Using a Phage Cocktail in Vitro and in a Clot Model

    No full text
    The deteriorating effectiveness of antibiotics is propelling researchers worldwide towards alternative techniques such as phage therapy: curing infectious diseases using viruses of bacteria called bacteriophages. In a previous paper, we isolated phage EFDG1, highly effective against both planktonic and biofilm cultures of one of the most challenging pathogenic species, the vancomycin-resistant Enterococcus (VRE). Thus, it is a promising phage to be used in phage therapy. Further experimentation revealed the emergence of a mutant resistant to EFDG1 phage: EFDG1r. This kind of spontaneous resistance to antibiotics would be disastrous occurrence, however for phage-therapy it is only a minor hindrance. We quickly and successfully isolated a new phage, EFLK1, which proved effective against both the resistant mutant EFDG1r and its parental VRE, Enterococcus faecalis V583. Furthermore, combining both phages in a cocktail produced an additive effect against E. faecalis V583 strains regardless of their antibiotic or phage-resistance profile. An analysis of the differences in genome sequence, genes, mutations, and tRNA content of both phages is presented. This work is a proof-of-concept of one of the most significant advantages of phage therapy, namely the ability to easily overcome emerging resistant bacteria

    Phages in a thermoreversible sustained-release formulation targeting E. faecalis in vitro and in vivo.

    No full text
    IntroductionEnterococcus faecalis is a key pathogen recovered from root canals when conventional treatment fails. Phage therapy has generated new interest in combating pathogens. A sustained-release formulation using specific phages against E. faecalis may offer an alternative approach.ObjectivesTo evaluate the efficacy of anti-E. faecalis phages formulated in a thermo- sustained-release system against E. faecalis in vitro and in vivo.MethodsEFDG1 and EFLK1 phages were formulated with poloxamer P407. Gelation time, phage survival, activity and toxicity were evaluated. Lytic activity was evaluated in vitro against E. faecalis at various growth phases, including anti-biofilm activity. Methods included viable bacterial count (CFU/mL), biofilm biomass determination and electron microscopy (live/dead staining). Further evaluation included infected incisors in an in vivo rat model. Anti-E. faecalis phage-cocktail suspension and sustained-release phage formulation were evaluated by viable bacterial count (CFU/mL), histology, scanning electron microscopy (SEM) and 16S genome sequencing of the microbiota of the root canal.ResultsGelation time for clinical use was established. Low toxicity and a high phage survival rate were recorded. Sustained-release phages reduced E. faecalis in logarithmic (4 logs), stationary (3 logs) and biofilm (4 logs) growth phases. Prolonged anti-biofilm activity of 88% and 95% reduction in biomass and viable counts, respectively, was recorded. Reduction of intracanal viable bacterial counts was observed (99% of enterococci) also seen in SEM. Phage treatment increased Proteobacteria and decreased Firmicutes. Histology showed reduced periapical inflammation and improved healing following phage treatment.ConclusionPoloxamer P407 formulated with phages has an effective and long-lasting effect in vitro and in vivo targeting E. faecalis

    Improving Communication with Parents in the NICU during the COVID-19 Pandemic, a Study and Review of the Literature

    No full text
    Background: Communication with parents of sick premature and term infants in the NICU is complicated and challenging. Multiple efforts have been made to improve it, including the introduction of new electronic-based measures. Aim: We aimed to study the influence of implementation of a new communication technology on parents’ satisfaction with care in the NICU during the COVID-19 pandemic. Methods: Infants were video-recorded in their incubators or cots without being disturbed. These short films, with voice updates on the infant’s condition, were sent on a daily basis to their parents via a WhatsApp application. Results: Parents who chose to join the new communication project (study group) were older, and their infants were more premature. Parents were satisfied with this new communication modality. Satisfaction scores in both study and control groups were high, but not significantly different. Conclusions: Although the implementation of the new communication project was successful, we could not demonstrate significant improvement in satisfaction scores that were high in study and control groups, reflecting baseline high satisfaction. Further studies are needed employing other assessment tools in order to evaluate other aspects of parents’ satisfaction with new modalities of communication introduced to the NICU, and their effects on parents’ bonding with their infants

    Table_1.XLSX

    No full text
    <p>The deteriorating effectiveness of antibiotics is propelling researchers worldwide towards alternative techniques such as phage therapy: curing infectious diseases using viruses of bacteria called bacteriophages. In a previous paper, we isolated phage EFDG1, highly effective against both planktonic and biofilm cultures of one of the most challenging pathogenic species, the vancomycin-resistant Enterococcus (VRE). Thus, it is a promising phage to be used in phage therapy. Further experimentation revealed the emergence of a mutant resistant to EFDG1 phage: EFDG1<sup>r</sup>. This kind of spontaneous resistance to antibiotics would be disastrous occurrence, however for phage-therapy it is only a minor hindrance. We quickly and successfully isolated a new phage, EFLK1, which proved effective against both the resistant mutant EFDG1<sup>r</sup> and its parental VRE, Enterococcus faecalis V583. Furthermore, combining both phages in a cocktail produced an additive effect against E. faecalis V583 strains regardless of their antibiotic or phage-resistance profile. An analysis of the differences in genome sequence, genes, mutations, and tRNA content of both phages is presented. This work is a proof-of-concept of one of the most significant advantages of phage therapy, namely the ability to easily overcome emerging resistant bacteria.</p

    Phage therapy against Enterococcus faecalis

    No full text
    corecore