3,581 research outputs found
Quantum Key Distribution with Classical Bob
Secure key distribution among two remote parties is impossible when both are
classical, unless some unproven (and arguably unrealistic)
computation-complexity assumptions are made, such as the difficulty of
factorizing large numbers. On the other hand, a secure key distribution is
possible when both parties are quantum.
  What is possible when only one party (Alice) is quantum, yet the other (Bob)
has only classical capabilities? We present a protocol with this constraint,
and prove its robustness against attacks: we prove that any attempt of an
adversary to obtain information (and even a tiny amount of information)
necessarily induces some errors that the legitimate users could notice.Comment: 4 and a bit pages, 1 figure, RevTe
Optimal Universal Disentangling Machine for Two Qubit Quantum States
We derive the optimal curve satisfied by the reduction factors, in the case
of universal disentangling machine which uses only local operations.
Impossibility of constructing a better disentangling machine, by using
non-local operations, is discussed.Comment: 15 pages, 2 eps figures, 1 section added, 1 eps figure added, minor
  corrections, 2 reference numbers correcte
Nonlinear Qubit Transformations
We generalise our previous results of universal linear manipulations [Phys.
Rev. A63, 032304 (2001)] to investigate three types of nonlinear qubit
transformations using measurement and quantum based schemes. Firstly, nonlinear
rotations are studied. We rotate different parts of a Bloch sphere in opposite
directions about the z-axis. The second transformation is a map which sends a
qubit to its orthogonal state (which we define as ORTHOG). We consider the case
when the ORTHOG is applied to only a partial area of a Bloch sphere. We also
study nonlinear general transformation, i.e. (theta,phi)->(theta-alpha,phi),
again, applied only to part of the Bloch sphere. In order to achieve these
three operations, we consider different measurement preparations and derive the
optimal average (instead of universal) quantum unitary transformations. We also
introduce a simple method for a qubit measurement and its application to other
cases.Comment: minor corrections. To appear in PR
Design approaches in technology enhanced learning
Design is a critical to the successful development of any interactive learning environment (ILE). Moreover, in technology enhanced learning (TEL), the design process requires input from many diverse areas of expertise. As such, anyone undertaking tool development is required to directly address the design challenge from multiple perspectives. We provide a motivation and rationale for design approaches for learning technologies that draws upon Simon's seminal proposition of Design Science (Simon, 1969). We then review the application of Design Experiments (Brown, 1992) and Design Patterns (Alexander et al., 1977) and argue that a patterns approach has the potential to address many of the critical challenges faced by learning technologists
Realization of Optimal Disentanglement by Teleportation via Separable Channel
We discuss here the best disentanglement processes of states of two two-level
systems which belong to (i) the universal set, (ii) the set in which the states
of one party lie on a single great circle of the Bloch sphere, and (iii) the
set in which the states of one party commute with each other, by teleporting
the states of one party (on which the disentangling machine is acting) through
three particular type of separable channels, each of which is a mixture of Bell
states. In the general scenario, by teleporting one party's state of an
arbitrary entangled state of two two-level parties through some mixture of Bell
states, we have shown that this entangled state can be made separable by using
a physically realizable map , acting on one party's states, if
, where
 (for ), and .Comment: 20 pages Late
Finite lifetime eigenfunctions of coupled systems of harmonic oscillators
We find a Hermite-type basis for which the eigenvalue problem associated to
the operator  acting on  becomes a three-terms recurrence. Here  and  are two constant
positive definite matrices with no other restriction. Our main result provides
an explicit characterization of the eigenvectors of  that lie in the
span of the first four elements of this basis when .Comment: 11 pages, 1 figure. Some typos where corrected in this new versio
Gaia DR2 view of the Lupus V-VI clouds: the candidate diskless young stellar objects are mainly background contaminants
Extensive surveys of star-forming regions with Spitzer have revealed
populations of disk-bearing young stellar objects. These have provided crucial
constraints, such as the timescale of dispersal of protoplanetary disks,
obtained by carefully combining infrared data with spectroscopic or X-ray data.
While observations in various regions agree with the general trend of
decreasing disk fraction with age, the Lupus V and VI regions appeared to have
been at odds, having an extremely low disk fraction. Here we show, using the
recent Gaia data release 2 (DR2), that these extremely low disk fractions are
actually due to a very high contamination by background giants. Out of the 83
candidate young stellar objects (YSOs) in these clouds observed by Gaia, only
five have distances of 150 pc, similar to YSOs in the other Lupus clouds, and
have similar proper motions to other members in this star-forming complex. Of
these five targets, four have optically thick (Class II) disks. On the one
hand, this result resolves the conundrum of the puzzling low disk fraction in
these clouds, while, on the other hand, it further clarifies the need to
confirm the Spitzer selected diskless population with other tracers, especially
in regions at low galactic latitude like Lupus V and VI. The use of Gaia
astrometry is now an independent and reliable way to further assess the
membership of candidate YSOs in these, and potentially other, star-forming
regions.Comment: Accepted for publication on Astronomy&Astrophysics Letter
Magnetic states at the surface of alpha Fe2O3 thin films doped with Ti, Zn, or Sn
The spin states at the surface of epitaxial thin films of hematite, both
undoped and doped with 1% Ti, Sn or Zn, respectively, were probed with x-ray
magnetic linear dichroism (XMLD) spectroscopy. Morin transitions were observed
for the undoped (T_M~200 K) and Sn-doped (T_M~300 K) cases, while Zn and
Ti-doped samples were always in the high and low temperature phases,
respectively. In contrast to what has been reported for bulk hematite doped
with the tetravalent ions Sn4+ and Ti4+, for which T_M dramatically decreases,
these dopants substantially increase T_M in thin films, far exceeding the bulk
values. The normalized Fe LII-edge dichroism for T<T_M does not strongly depend
on doping or temperature, except for an apparent increase of the peak
amplitudes for T<100 K. We observed magnetic field-induced inversions of the
dichroism peaks. By applying a magnetic field of 6.5 T on the Ti-doped sample,
a transition into the T>T_M state was achieved. The temperature dependence of
the critical field for the Sn-doped sample was characterized in detail. It was
demonstrated the sample-to-sample variations of the Fe LIII-edge spectra were,
for the most part, determined solely by the spin orientation state.
Calculations of the polarization-depedent spectra based on a spin-multiplet
model were in reasonable agreement with the experiment and showed a mixed
excitation character of the peak structures.Comment: 8 pages, 8 figure
Steady-State Analysis of Load Balancing with Coxian- Distributed Service Times
This paper studies load balancing for many-server ( servers) systems. Each
server has a buffer of size  and can have at most one job in service and
 jobs in the buffer. The service time of a job follows the Coxian-2
distribution. We focus on steady-state performance of load balancing policies
in the heavy traffic regime such that the normalized load of system is  for  We identify a set of policies that
achieve asymptotic zero waiting. The set of policies include several classical
policies such as join-the-shortest-queue (JSQ), join-the-idle-queue (JIQ),
idle-one-first (I1F) and power-of--choices (Po) with . The proof of the main result is based on Stein's method and state space
collapse. A key technical contribution of this paper is the iterative state
space collapse approach that leads to a simple generator approximation when
applying Stein's method
- …
