16 research outputs found

    The role of EGFR family inhibitors in muscle invasive bladder cancer: a review of clinical data and molecular evidence.

    No full text
    PurposeConventional platinum based chemotherapy for advanced urothelial carcinoma is plagued by common resistance to this regimen. Several studies implicate the EGFR family of RTKs in urothelial carcinoma progression and chemoresistance. Many groups have investigated the effects of inhibitors of this family in patients with urothelial carcinoma. This review focuses on the underlying molecular pathways that lead to urothelial carcinoma resistance to EGFR family inhibitors.Materials and methodsWe performed a PubMed® search for peer reviewed literature on bladder cancer development, EGFR family expression, clinical trials of EGFR family inhibitors and molecular bypass pathways. Research articles deemed to be relevant were examined and a summary of original data was created. Meta-analysis of expression profiles was also performed for each EGFR family member based on data sets accessible via Oncomine®.ResultsMany clinical trials using inhibitors of EGFR family RTKs have been done or are under way. Those that have concluded with results published to date do not show an added benefit over standard of care chemotherapy in an adjuvant or second line setting. However, a neoadjuvant study using erlotinib before radical cystectomy demonstrated promising results.ConclusionsClinical and preclinical studies show that for reasons not currently clear prior treatment with chemotherapeutic agents rendered patients with urothelial carcinoma with muscle invasive bladder cancer resistant to EGFR family inhibitors as well. However, EGFR family inhibitors may be of use in patients with no prior chemotherapy in whom EGFR or ERBB2 is over expressed

    miR-148a dependent apoptosis of bladder cancer cells is mediated in part by the epigenetic modifier DNMT1.

    No full text
    Urothelial cell carcinoma of the bladder (UCCB) is the most common form of bladder cancer and it is estimated that ~15,000 people in the United States succumbed to this disease in 2013. Bladder cancer treatment options are limited and research to understand the molecular mechanisms of this disease is needed to design novel therapeutic strategies. Recent studies have shown that microRNAs play pivotal roles in the progression of cancer. miR-148a has been shown to serve as a tumor suppressor in cancers of the prostate, colon, and liver, but its role in bladder cancer has never been elucidated. Here we show that miR-148a is down-regulated in UCCB cell lines. We demonstrate that overexpression of miR-148a leads to reduced cell viability through an increase in apoptosis rather than an inhibition of proliferation. We additionally show that miR-148a exerts this effect partially by attenuating expression of DNA methyltransferase 1 (DNMT1). Finally, our studies demonstrate that treating cells with both miR-148a and either cisplatin or doxorubicin is either additive or synergistic in causing apoptosis. These data taken together suggest that miR-148a is a tumor suppressor in UCCB and could potentially serve as a novel therapeutic for this malignancy
    corecore