419 research outputs found

    On the Sunyaev-Zel'dovich effect from dark matter annihilation or decay in galaxy clusters

    Full text link
    We revisit the prospects for detecting the Sunyaev Zel'dovich (SZ) effect induced by dark matter (DM) annihilation or decay. We show that with standard (or even extreme) assumptions for DM properties, the optical depth associated with relativistic electrons injected from DM annihilation or decay is much smaller than that associated with thermal electrons, when averaged over the angular resolution of current and future experiments. For example, we find: τDM109105\tau_{\rm DM} \sim 10^{-9}-10^{-5} (depending on the assumptions) for \mchi = 1 GeV and a density profile ρr1\rho\propto r^{-1} for a template cluster located at 50 Mpc and observed within an angular resolution of 10"10", compared to τth103102\tau_{\rm th}\sim 10^{-3}-10^{-2}. This, together with a full spectral analysis, enables us to demonstrate that, for a template cluster with generic properties, the SZ effect due to DM annihilation or decay is far below the sensitivity of the Planck satellite. This is at variance with previous claims regarding heavier annihilating DM particles. Should DM be made of lighter particles, the current constraints from 511 keV observations on the annihilation cross section or decay rate still prevent a detectable SZ effect. Finally, we show that spatial diffusion sets a core of a few kpc in the electron distribution, even for very cuspy DM profiles, such that improving the angular resolution of the instrument, e.g. with ALMA, does not necessarily improve the detection potential. We provide useful analytical formulae parameterized in terms of the DM mass, decay rate or annihilation cross section and DM halo features, that allow quick estimates of the SZ effect induced by any given candidate and any DM halo profile.Comment: 27 p, 6 figs, additional section on spatial diffusion effects. Accepted for publication in JCA

    Rehabilitation services for persons affected by stroke in Jordan

    Get PDF
    The purpose of this study was to explore the perceptions stroke survivors have of the rehabilitation services received by them in the Jordanian community. A secondary aim was to explore the impact of culture on providing appropriate services for stroke survivors.Eighteen stroke survivors were recruited from an outpatient stroke rehabilitation programme. All 18 participants had been discharged from hospital for between one and six months. Semi-structured interviews were performed, either in the physiotherapy outpatient clinic where the affected person was attending a clinic or in their homes. Transcription of interviews carried out in Arabic and thematic analysis was also carried out in that language by transcribers who were fluent in Arabic and English, using a back-translation method. Necessary measures were taken to ensure the accuracy, reliability and validity of the data collection and analysis. Following thematic analysis, themes arising out of the data included physiotherapy and occupational therapy support in the community, out-patient rehabilitation clinic services, community clinic services and support from families, friends and neighbours. Participants expressed satisfaction with their therapists, but there were large areas of unmet rehabilitation need for stroke survivors in the Jordanian community such as a limited availability of occupational therapy services, insufficient amount of therapy services and poor medical support.   This study presents a unique contribution to knowledge relating to the experiences of stroke survivors in a developing country, and also shows how care systems are very dependent on cultural contexts, cultural beliefs and practises.DOI 10.5463/DCID.v22i1.18</p

    A “dock, lock, and latch” Structural Model for a Staphylococcal Adhesin Binding to Fibrinogen

    Get PDF
    AbstractGram-positive pathogens such as staphylococci contain multiple cell wall-anchored proteins that serve as an interface between the microbe and its environment. Some of these proteins act as adhesins and mediate bacterial attachment to host tissues. SdrG is a cell wall-anchored adhesin from Staphylococcus epidermidis that binds to the Bβ chain of human fibrinogen (Fg) and is necessary and sufficient for bacterial attachment to Fg-coated biomaterials. Here, we present the crystal structures of the ligand binding region of SdrG as an apoprotein and in complex with a synthetic peptide analogous to its binding site in Fg. Analysis of the crystal structures, along with mutational studies of both the protein and of the peptide, reveals that SdrG binds to its ligand with a dynamic “dock, lock, and latch” mechanism. We propose that this mechanism represents a general mode of ligand binding for structurally related cell wall-anchored proteins of gram-positive bacteria

    XY model in small-world networks

    Full text link
    The phase transition in the XY model on one-dimensional small-world networks is investigated by means of Monte-Carlo simulations. It is found that long-range order is present at finite temperatures, even for very small values of the rewiring probability, suggesting a finite-temperature transition for any nonzero rewiring probability. Nature of the phase transition is discussed in comparison with the globally-coupled XY model.Comment: 5 pages, accepted in PR

    Flux-lattice melting in two-dimensional disordered superconductors

    Full text link
    The flux line lattice melting transition in two-dimensional pure and disordered superconductors is studied by a Monte Carlo simulation using the lowest Landau level approximation and quasi-periodic boundary condition on a plane. The position of the melting line was determined from the diffraction pattern of the superconducting order parameter. In the clean case we confirmed the results from earlier studies which show the existence of a quasi-long range ordered vortex lattice at low temperatures. Adding frozen disorder to the system the melting transition line is shifted to slightly lower fields. The correlations of the order parameter for translational long range order of the vortex positions seem to decay slightly faster than a power law (in agreement with the theory of Carpentier and Le Doussal) although a simple power law decay cannot be excluded. The corresponding positional glass correlation function decays as a power law establishing the existence of a quasi-long range ordered positional glass formed by the vortices. The correlation function characterizing a phase coherent vortex glass decays however exponentially ruling out the possible existence of a phase coherent vortex glass phase.Comment: 12 pages, 21 figures, final version to appear in Phys. Rev.

    Exciting, Cooling And Vortex Trapping In A Bose-Condensed Gas

    Full text link
    A straight forward numerical technique, based on the Gross-Pitaevskii equation, is used to generate a self-consistent description of thermally-excited states of a dilute boson gas. The process of evaporative cooling is then modelled by following the time evolution of the system using the same equation. It is shown that the subsequent rethermalisation of the thermally-excited state produces a cooler coherent condensate. Other results presented show that trapping vortex states with the ground state may be possible in a two-dimensional experimental environment.Comment: 9 pages, 7 figures. It's worth the wait! To be published in Physical Review A, 1st February 199

    Magnetism in a lattice of spinor Bose condensates

    Full text link
    We study the ground state magnetic properties of ferromagnetic spinor Bose-Einstein condensates confined in a deep optical lattices. In the Mott insulator regime, the ``mini-condensates'' at each lattice site behave as mesoscopic spin magnets that can interact with neighboring sites through both the static magnetic dipolar interaction and the light-induced dipolar interaction. We show that such an array of spin magnets can undergo a ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar interaction depending on the dimension of the confining optical lattice. The ground-state spin configurations and related magnetic properties are investigated in detail

    Lagrangian evolution of global strings

    Full text link
    We establish a method to trace the Lagrangian evolution of extended objects consisting of a multicomponent scalar field in terms of a numerical calculation of field equations in three dimensional Eulerian meshes. We apply our method to the cosmological evolution of global strings and evaluate the energy density, peculiar velocity, Lorentz factor, formation rate of loops, and emission rate of Nambu-Goldstone (NG) bosons. We confirm the scaling behavior with a number of long strings per horizon volume smaller than the case of local strings by a factor of \sim 10. The strategy and the method established here are applicable to a variety of fields in physics.Comment: 5 pages, 2 figure

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc
    corecore