47,507 research outputs found

    Generating entangled atom-photon pairs from Bose-Einstein condensates

    Get PDF
    We propose using spontaneous Raman scattering from an optically driven Bose-Einstein condensate as a source of atom-photon pairs whose internal states are maximally entangled. Generating entanglement between a particle which is easily transmitted (the photon) and one which is easily trapped and coherently manipulated (an ultracold atom) will prove useful for a variety of quantum-information related applications. We analyze the type of entangled states generated by spontaneous Raman scattering and construct a geometry which results in maximum entanglement

    Theory of superradiant scattering of laser light from Bose-Einstein condensates

    Full text link
    In a recent MIT experiment, a new form of superradiant Rayleigh scattering was observed in Bose-Einstein condensates. We present a detailed theory of this phenomena in which the directional dependence of the scattering rate and condensate depletion lead to mode competition which is ultimately responsible for superradiance. The nonlinear response of the system is highly sensitive to initial quantum fluctuations which cause large run to run variations in the observed superradiant pulses.Comment: Updated version with new figures,a numerical simulation with realistic experimental parameters is now included. Featured in September 1999 Physics Today, in Search and Discovery sectio

    The new radiation-hard optical links for the ATLAS pixel detector

    Full text link
    The ATLAS detector is currently being upgraded with a new layer of pixel based charged particle tracking and a new arrangement of the services for the pixel detector. These upgrades require the replacement of the opto-boards previously used by the pixel detector. In this report we give details on the design and production of the new opto-boards.Comment: Presentation at the DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 201

    Finite Cluster Typical Medium Theory for Disordered Electronic Systems

    Get PDF
    We use the recently developed typical medium dynamical cluster (TMDCA) approach~[Ekuma \etal,~\textit{Phys. Rev. B \textbf{89}, 081107 (2014)}] to perform a detailed study of the Anderson localization transition in three dimensions for the Box, Gaussian, Lorentzian, and Binary disorder distributions, and benchmark them with exact numerical results. Utilizing the nonlocal hybridization function and the momentum resolved typical spectra to characterize the localization transition in three dimensions, we demonstrate the importance of both spatial correlations and a typical environment for the proper characterization of the localization transition in all the disorder distributions studied. As a function of increasing cluster size, the TMDCA systematically recovers the re-entrance behavior of the mobility edge for disorder distributions with finite variance, obtaining the correct critical disorder strengths, and shows that the order parameter critical exponent for the Anderson localization transition is universal. The TMDCA is computationally efficient, requiring only a small cluster to obtain qualitative and quantitative data in good agreement with numerical exact results at a fraction of the computational cost. Our results demonstrate that the TMDCA provides a consistent and systematic description of the Anderson localization transition.Comment: 20 Pages, 19 Figures, 3 Table

    A Tunable Anomalous Hall Effect in a Non-Ferromagnetic System

    Full text link
    We measure the low-field Hall resistivity of a magnetically-doped two-dimensional electron gas as a function of temperature and electrically-gated carrier density. Comparing these results with the carrier density extracted from Shubnikov-de Haas oscillations reveals an excess Hall resistivity that increases with decreasing temperature. This excess Hall resistivity qualitatively tracks the paramagnetic polarization of the sample, in analogy to the ferromagnetic anomalous Hall effect. The data are consistent with skew-scattering of carriers by disorder near the crossover to localization

    Management of neonates after postpartum discharge and all children in the ambulatory setting during the coronavirus disease 2019 (COVID-19) pandemic

    Get PDF
    PURPOSE OF REVIEW: The present coronavirus disease 2019 (COVID-19) pandemic has created additional challenges with an increased number of presumed healthy, full-term newborns being discharged at 24 h after delivery. Short lengths of stay raise the possibility of mother-infant dyads being less ready for discharge, defined as at least one of the three informants (i.e., mother, pediatrician, and obstetrician) believing that either the mother and/or infant should stay longer than the proposed time of discharge. This public health crisis has reduced the number of in-person well child visits, negatively impacting vaccine receipt, and anticipatory guidance. RECENT FINDINGS: Extra precautions should be taken during the transition period between postpartum discharge and follow-up in the ambulatory setting to ensure the safety of all patients and practice team members. This should include restructuring office flow by visit type and location, limiting in-person visits during well infant exams, instituting proper procedures for personal protective equipment and for cleaning of the office, expanding telehealth capabilities for care and education, and prioritizing universal vaccinations and routine well child screenings. SUMMARY: Based on current limited evidence, this report provides guidance for the postdischarge management of newborns born to mothers with confirmed or suspected disease in the ambulatory setting as well as prioritizing universal immunizations and routine well child screenings during the COVID-19 pandemic

    Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors

    Get PDF
    We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with ≲ 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of σ_E = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for ∼1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering

    Turbulence generation by a shock wave interacting with a random density inhomogeneity field

    Full text link
    When a planar shock wave interacts with a random pattern of pre-shock density non-uniformities, it generates an anisotropic turbulent velocity/vorticity field. This turbulence plays an important role at the early stages of the mixing process in the compressed fluid. This situation emerges naturally in shock interaction with weakly inhomogeneous deuterium-wicked foam targets in Inertial Confinement Fusion (ICF) and with density clumps/clouds in astrophysics. We present an exact small-amplitude linear theory describing such interaction. It is based on the exact theory of time and space evolution of the perturbed quantities behind a corrugated shock front for a single-mode pre-shock non-uniformity. Appropriate mode averaging in 2D results in closed analytical expressions for the turbulent kinetic energy, degree of anisotropy of velocity and vorticity fields in the shocked fluid, shock amplification of the density non-uniformity, and sonic energy flux radiated downstream. These explicit formulas are further simplified in the important asymptotic limits of weak/strong shocks and highly compressible fluids. A comparison with the related problem of a shock interacting with a pre-shock isotropic vorticity field is also presented.Comment: This article corresponds to a presentation given at the Second International Conference and Advanced School "Turbulent Mixing and Beyond," held on 27 July - 07 August 2009 at the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. That Conference Proceeding will be published as a Topical Issue of the Physica Scripta IOP scienc

    Energy cost associated with vortex crossing in superconductors

    Full text link
    Starting from the Ginzburg-Landau free energy of a type II superconductor in a magnetic field we estimate the energy associated with two vortices crossing. The calculations are performed by assuming that we are in a part of the phase diagram where the lowest Landau level approximation is valid. We consider only two vortices but with two markedly different sets of boundary conditions: on a sphere and on a plane with quasi-periodic boundary conditions. We find that the answers are very similar suggesting that the energy is localised to the crossing point. The crossing energy is found to be field and temperature dependent -- with a value at the experimentally measured melting line of U×≃7.5kTm≃1.16/cL2U_\times \simeq 7.5 k T_m \simeq 1.16/c_L^2, where cLc_L is the Lindemann melting criterion parameter. The crossing energy is then used with an extension of the Marchetti, Nelson and Cates hydrodynamic theory to suggest an explanation of the recent transport experiments of Safar {{\em et al.}\ }.Comment: 15 pages, RevTex v3.0, followed by 5 postscript figure
    • …
    corecore