2,225 research outputs found
Gravitation Physics at BGPL
We report progress on a program of gravitational physics experiments using
cryogenic torsion pendula undergoing large-amplitude torsion oscillation. This
program includes tests of the gravitational inverse square law and of the weak
equivalence principle. Here we describe our ongoing search for
inverse-square-law violation at a strength down to of standard
gravity. The low-vibration environment provided by the Battelle Gravitation
Physics Laboratory (BGPL) is uniquely suited to this study.Comment: To be published in The Proceedings of the Francesco Melchiorri
Memorial Conference as a special issue of New Astronomy Review
Can a Lattice String Have a Vanishing Cosmological Constant?
We prove that a class of one-loop partition functions found by Dienes, giving
rise to a vanishing cosmological constant to one-loop, cannot be realized by a
consistent lattice string. The construction of non-supersymmetric string with a
vanishing cosmological constant therefore remains as elusive as ever. We also
discuss a new test that any one-loop partition function for a lattice string
must satisfy.Comment: 14 page
Interference of a Tonks-Girardeau Gas on a Ring
We study the quantum dynamics of a one-dimensional gas of impenetrable bosons
on a ring, and investigate the interference that results when an initially
trapped gas localized on one side of the ring is released, split via an
optical-dipole grating, and recombined on the other side of the ring. Large
visibility interference fringes arise when the wavevector of the optical dipole
grating is larger than the effective Fermi wavevector of the initial gas.Comment: 7 pages, 3 figure
Measurement and modeling of the sources and sinks of greenhouse gases from northern wetlands
Northern wetlands contain ≈30% of the world’s terrestrial carbon store, resulting from the incomplete decomposition of plant material inhibited because oxygen diffusion is limited by water saturation of the soil. While this behaviour results in a sink for CO2, anaerobic pathways of decomposition result in wetlands being a large, but variable, source of CH4. Northern wetlands tend to be nitrogen-impoverished, therefore they are not an important source of N2O. However, nitrogen deposition, peat extraction, and other land-use changes have the potential to alter their greenhouse gas (GHG) sink/source function. Until recently, most of the studies on the atmosphere-biosphere exchange of greenhouse gases from northern wetlands were short-term and seasonal. In 1998 the Peatland Carbon Study began continuous measurements of the carbon dynamics of a northern peatland and developed several ecosystem models to be used in simulations of the response of peatlands to climate variability and change. The continuous measurements have established the dominant role of climate variability in determining the magnitude and sign of the fluxes of GHGs. The Peatland Carbon Simulator (PCARS) was developed to use either direct measurements or modeled climate from a land surface process model such as the Canadian Land Surface Scheme (CLASS) which has been modi- fied to incorporate the physical attributes of wetlands as inputs. PCARS illustrates the relative importance of various components of the ecosystem in determining the interannual variability in GHG exchange. Evaluation of PCARS has helped identify significant gaps in our knowledge of peatland systems. A second, more phenomenological model, the Peat Accumulation Model (PAM), demonstrates the overall importance of precipitation in controlling decadal to millennial scale variations in sink/source strength of CO2. The Canadian Global Coupled Climate Carbon Model (CGC3M) Network is attempting to parameterize wetland processes for the inclusion in a global terrestrial ecosystem model for climate simulations, but it is a significant challenge to develop an efficient, yet realistic, wetland simulator for global scale modelling
Creating Bell states and decoherence effects in quantum dots system
We show how to improve the efficiency for preparing Bell states in coupled
two quantum dots system. A measurement to the state of driven quantum laser
field leads to wave function collapse. This results in highly efficiency
preparation of Bell states. The effect of decoherence on the efficiency of
generating Bell states is also discussed in this paper. The results show that
the decoherence does not affect the relative weight of and in the
output state, but the efficiency of finding Bell states.Comment: 4 pages, 2figures, corrected some typo
Loop-Generated Bounds on Changes to the Graviton Dispersion Relation
We identify the effective theory appropriate to the propagation of massless
bulk fields in brane-world scenarios, to show that the dominant low-energy
effect of asymmetric warping in the bulk is to modify the dispersion relation
of the effective 4-dimensional modes. We show how such changes to the graviton
dispersion relation may be bounded through the effects they imply, through
loops, for the propagation of standard model particles. We compute these bounds
and show that they provide, in some cases, the strongest constraints on
nonstandard gravitational dispersions. The bounds obtained in this way are the
strongest for the fewest extra dimensions and when the extra-dimensional Planck
mass is the smallest. Although the best bounds come for warped 5-D scenarios,
for which the 5D Planck Mass is O(TeV), even in 4 dimensions the graviton loop
can lead to a bound on the graviton speed which is comparable with other
constraints.Comment: 18 pages, LaTeX, 4 figures, uses revte
- …