3,048 research outputs found

    \Omega-deformation of B-twisted gauge theories and the 3d-3d correspondence

    Full text link
    We study \Omega-deformation of B-twisted gauge theories in two dimensions. As an application, we construct an \Omega-deformed, topologically twisted five-dimensional maximally supersymmetric Yang-Mills theory on the product of a Riemann surface Σ\Sigma and a three-manifold MM, and show that when Σ\Sigma is a disk, this theory is equivalent to analytically continued Chern-Simons theory on MM. Based on these results, we establish a correspondence between three-dimensional N=2\mathcal{N} = 2 superconformal theories and analytically continued Chern-Simons theory. Furthermore, we argue that there is a mirror symmetry between {\Omega}-deformed two-dimensional theories.Comment: 26 pages. v2: the discussion on the boundary condition for vector multiplet improved, and other minor changes mad

    Refined Hopf Link Revisited

    Get PDF
    We establish a relation between the refined Hopf link invariant and the S-matrix of the refined Chern-Simons theory. We show that the refined open string partition function corresponding to the Hopf link, calculated using the refined topological vertex, when expressed in the basis of Macdonald polynomials gives the S-matrix of the refined Chern-Simons theory.Comment: 17 page

    GLSMs for non-Kahler Geometries

    Get PDF
    We identify a simple mechanism by which H-flux satisfying the modified Bianchi identity arises in garden-variety (0,2) gauged linear sigma models. Taking suitable limits leads to effective gauged linear sigma models with Green-Schwarz anomaly cancellation. We test the quantum-consistency of a class of such effective theories by constructing an off-shell superconformal algebra, providing evidence that these models run to good CFTs in the deep IR.Comment: 37 pages, Minor updates for v

    Anomaly-Free Supersymmetric SO(2N+2)/U(N+1) sigma-Model Based on the SO(2N+1) Lie Algebra of the Fermion Operators

    Full text link
    The extended supersymmetric (SUSY) sigma-model has been proposed on the bases of SO(2N+1) Lie algebra spanned by fermion annihilation-creation operators and pair operators. The canonical transformation, extension of an SO(2N) Bogoliubov transformation to an SO(2N+1) group, is introduced. Embedding the SO(2N+1) group into an SO(2N+2) group and using SO(2N+2)/U(N+1) coset variables, we have investigated the SUSY sigma-model on the Kaehler manifold, the coset space SO(2N+2)/U(N+1). We have constructed the Killing potential, extension of the potential in the SO(2N)/U(N) coset space to that in the SO(2N+2)/U(N+1) coset space. It is equivalent to the generalized density matrix whose diagonal-block part is related to a reduced scalar potential with a Fayet-Ilipoulos term. The f-deformed reduced scalar potential is optimized with respect to vacuum expectation value of the sigma-model fields and a solution for one of the SO(2N+1) group parameters has been obtained. The solution, however, is only a small part of all solutions obtained from anomaly-free SUSY coset models. To construct the coset models consistently, we must embed a coset coordinate in an anomaly-free spinor representation (rep) of SO(2N+2) group and give corresponding Kaehler and Killing potentials for an anomaly-free SO(2N+2)/U(N+1) model based on each positive chiral spinor rep. Using such mathematical manipulation we construct successfully the anomaly-free SO(2N+2)/U(N+1) SUSY sigma-model and investigate new aspects which have never been seen in the SUSY sigma-model on the Kaehler coset space SO(2N)/U(N). We reach a f-deformed reduced scalar potential. It is minimized with respect to the vacuum expectation value of anomaly-free SUSY sigma-model fields. Thus we find an interesting f-deformed solution very different from the previous solution for an anomaly-free SO(2.5+2)/(SU(5+1)*U(1)) SUSY sigma-model.Comment: 24 pages, no fiure

    The partition bundle of type A_{N-1} (2, 0) theory

    Full text link
    Six-dimensional (2, 0) theory can be defined on a large class of six-manifolds endowed with some additional topological and geometric data (i.e. an orientation, a spin structure, a conformal structure, and an R-symmetry bundle with connection). We discuss the nature of the object that generalizes the partition function of a more conventional quantum theory. This object takes its values in a certain complex vector space, which fits together into the total space of a complex vector bundle (the `partition bundle') as the data on the six-manifold is varied in its infinite-dimensional parameter space. In this context, an important role is played by the middle-dimensional intermediate Jacobian of the six-manifold endowed with some additional data (i.e. a symplectic structure, a quadratic form, and a complex structure). We define a certain hermitian vector bundle over this finite-dimensional parameter space. The partition bundle is then given by the pullback of the latter bundle by the map from the parameter space related to the six-manifold to the parameter space related to the intermediate Jacobian.Comment: 15 pages. Minor changes, added reference

    Towards a 4d/2d correspondence for Sicilian quivers

    Get PDF
    We study the 4d/2d AGT correspondence between four-dimensional instanton counting and two-dimensional conformal blocks for generalized SU(2) quiver gauge theories coming from punctured Gaiotto curves of arbitrary genus. We propose a conformal block description that corresponds to the elementary SU(2) trifundamental half-hypermultiplet, and check it against Sp(1)-SO(4) instanton counting.Comment: 39 pages, 11 figure

    CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast

    Get PDF
    Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I
    corecore