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1 Introduction

The connection between the topological classification of knots and links with the topological

field theories goes back to the work by Witten realizing the knot polynomials as expectation

values of Wilson loops in Chern-Simons theory [1]. Although this connection defined a

three dimensional definition of the Jones polynomials it did not answer questions about

the integrality of the coefficients appearing in the polynomials. The interpretations for these

integers has been offered by both the mathematicians and physicists. On the mathematics

side, a doubly graded homology is associated to each knot [2]. The Euler characteristic of

the homology complex was shown to give the knot polynomials. The coefficients appear

as the dimension of the vector spaces in the complex, hence, the positivity and integrality

become manifest. The physics answer was given in the terms of counting BPS states. In

a type IIA compactification on Calabi-Yau threefold, the relevant BPS states come from

D2-branes wrapping two cycles with boundaries on Lagrangian cycles around which some

D4-branes are wrapped and extend in the non-compact transverse space [3].

The Poincaré polynomial of the doubly graded complex includes more information

about the knot and depends on one more parameter than the corresponding Euler char-

acteristic. It did not take a long time to realize that these more detailed polynomials can

be achieved in terms of a more refined counting of the BPS states in M-theory compacti-

fications [4]. The refinement was motivated by the equivariant computation, with respect

to the C× × C× action on C2 given by (z1, z2) 7→ (eε1z1, e
ε2z2), of instantons in N = 2

supersymmetric gauge theories [5] and was related to BPS invariants in [6] for the case

ε1 + ε2 6= 0. The formalism to compute these refined counting of BPS states within the
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topological string theory on toric Calabi-Yau threefolds was developed in [7]. Later it was

shown that the refined knot polynomials can be calculated using the refined topological

vertex in [8]. These results hinted at the existence of some refinement of the Chern-Simons

theory incorporating the extra deformation ε1 +ε2. Such a refinement of the Chern-Simons

theory for 3-manifolds with circle action (Seifert spaces) was recently constructed in [9].

In this short note we revisit the refined Hopf link studied in [8]. In an attempt to

understand the relation between the refined Hopf link and the refined Chern-Simons the-

ory we find that the open string partition function calculated from the refined topological

vertex seems to be written in a mixed basis of Schur and Macdonald polynomials with

Macdonald polynomials associated with the preferred direction. The fact that the pre-

ferred direction of the refined topological vertex seems to have the holonomy which gives

Macdonald polynomials rather than Schur polynomials was also indicated in [10, 11]. We

argue that this is indeed the case by looking at the structure of the free energy for the case

of the unknot. With a choice of basis of symmetric functions in mind we calculate the Hopf

link partition function and show that when written in the basis of Macdonald polynomials

the coefficients are the elements of the S-matrix of the refined Chern-Simons theory. Thus

in this case the refined topological vertex and the refined Chern-Simons theory calculation

give the same open string partition function. We also show that, up to framing factors

which need to be studied properly, the two different choices for the preferred direction give

the same open string partition function. This seems to indicate that open string partition

functions may also be independent of the preferred direction, as it was argued for closed

amplitudes in [7] and was used to develop new identities in symmetric functions in [12].

The paper is organized as follows. In section 2 we recall some results of Etingof and

Kirillov which are related to the refined Chern-Simons theory and use the idea of modular

tensor categories to establish an important identity which is used is section 3. In section 3

we argue the preferred direction of the refined topological vertex should be associated with

Macdonald polynomial rather than Schur polynomial. In section 4 we calculate the open

string partition function for the Hopf link and show when expressed in terms of Macdonald

polynomials it gives the S-matrix of the refined Chern-Simons theory. The calculation of

the refined Hopf link in this section relies heavily on the results of [13]. We also show

that for the brane configuration corresponding to the Hopf link the open string partition

function is also invariant under a change in the choice of the preferred direction.

2 Modular tensor categories and refined Chern-Simons

In [9] a refinement of the Chern-Simons theory based on a supersymmetric index was

described. The theory was engineered using M5-branes wrapped on a 3-manifold, inside

the cotangent space of the 3-manifold, with M2-branes ending on Lagrangian submanifold

providing the knots and links in the 3-manifold [3]. Apart from the usual parameter

q = exp
(

2πi
k+N

)
which is present in the SU(N) Chern-Simons theory with coupling constant

k, the refinement introduces a new parameter t which appears in the supersymmetric

index. The refinement requires an extra U(1) symmetry for the 3-manifold and therefore

the refined Chern-Simons theory only exists for Seifert manifolds.
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It was argued in [9] that the quantization of this theory on M , a solid torus with

boundary T 2, gives a a Hilbert space which is again labelled by integrable highest weight

representation of affine SU(N) at level k and the wavefunction on a solid torus with Wilson

line in representation λ is given by

Zλ(M) = ∆q,t Pλ(x; q, t), (2.1)

where x are the eigenvalues of the holonomy of the flat connection on the a-cycle of the

boundary T 2, Pλ(x; q, t) is the Macdonald polynomial [14] and

∆q,t =

β−1∏
m=0

∏
1≤i<j≤N

(
q
m
2 xi − q−

m
2 xj

)
, t = qβ , β ∈ Z≥0 . (2.2)

It was argued that the fusion coefficients N̂ν
λµ are not integers any more but are rational

functions of q and t given by

Pλ(x; q, t)Pµ(x; q, t) =
∑
ν

N̂ν
λµPν(x; q, t) . (2.3)

The S-matrix of the theory is a deformation of the usual S-matrix of the G/G WZW theory

(G = SU(N)) and is given by

Sλµ = Pλ(t
1
2 , t

3
2 , . . . , tN−

1
2 ; q, t)Pµ(t

1
2 q−λ1 , t

3
2 q−λ2 , . . . , tN−

1
2 q−λN ; q, t). (2.4)

It is interesting to note that the above S-matrix was studied by Etingof and Kirillov [15]

in the context of a modular tensor category based on the quantum group Uq(slN ) with q

being a root of unity.

The idea of modular tensor categories appeared in the study of rational conformal

field theories and it is the structure underlying a topological quantum field theory in 3-

dimensions. They first appeared in the work of Moore and Seiberg [16, 17]. The essential

idea is that there are a finite set of objects associated with a two dimensional surface. The

topological nature of the association implies that the mapping class group of the surface

acts on these objects. Perhaps the most well known example is the one coming from the

G/G WZW theory on T 2 for G = SU(N). In this case the objects are the conformal blocks

of the theory which are the characters of ŜU(N)k, the affine Lie algebra of SU(N) at level

k. The action of the modular group on the characters of ŜU(N)k is well known and is

given by:

Sλµ =
∑
w∈W

(−1)|w| exp

(
iπ

k +N
(λ+ ρ, w(µ+ ρ))

)
= sλ

(
q

1
2 , q

3
2 , . . . , qN−

1
2

)
sµ

(
q

1
2
−λ1 , q

3
2
−λ2 , . . . , qN−

1
2
−λN

)
. (2.5)

Since the WZW theory on T 2 is related to the canonical quantization of the Chern-Simons

theory on T 2 × R the space of conformal blocks of the WZW theory on T 2 is also the

Hilbert space of the Chern-Simons theory and these characters are the wavefunction of the

– 3 –
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Chen-Simons theory on solid torus with a Wilson line [18]. In the Chern-Simons theory

the normalized S-matrix Sλµ/S∅ ∅ is the Hopf link invariant.

A more general construction on surfaces with marked points can also be realized.

Recall that the wavefunctions of the Chern-Simons theory (conformal blocks of the WZW

theory) can be obtained by path integral on the solid torus with boundary T 2 [18]. These

can be realized as trace over the integrable highest weight representation. Let Vλ+ρ be the

finite dimensional irreducible representation of G = SU(N) with highest weight λ, then

ψ(x) = TrVρ(e
~x·~h) =

∏
1≤i<j≤N

(exi − exj ), (2.6)

where ~h are the Cartan generators. This is the partition function of the Chern-Simons the-

ory on the solid torus with exi being the eigenvalues of the holonomy of the flat connection

around the a cycle of the boundary [18]. If we insert some Wilson line on the boundary T 2

in representation with highest weight vector λ then

ψλ(x) = TrVλ+ρ(e
~x·~h) =

( ∏
1≤i<j≤N

(exi − exj )

)
sλ(ex1 , ex2 , . . . , exN ), (2.7)

where sλ is the Schur polynomial [14].

In [15, 19] the above construction was generalized to include a marked point, with

holonomy in the representation U , on the torus. Let U = S(β−1)NCN , (β − 1)N -th sym-

metric representation of SU(N). Let Φ be a non-zero intertwining operator V 7→ V ⊗ U
which exists if λ ≥ (β − 1) ρ. Let λ = µ + (β − 1) ρ, where µ is any dominant integral

weight then [15]

ψβλ = Tr|Vλ+ρ(Φ e~x·
~h) =

( ∏
1≤i<j≤N

(exi − exj )

)β
J
(β)
λ (ex1 , ex2 , . . . , exN ), (2.8)

where J
(α)
λ are Jack symmetric functions [14]. This corresponds to the beta-deformation of

the Vandermonde measure. The generalization to Macdonald polynomials requires working

with quantum group modules [15, 19]. Let Vλ+ρ and S(β−1)NCN be the q-deformation of

the SU(N)-modules so that these are now Uq(slN ) modules. Then [19]

ψβλ = Tr|Vλ(Φ e~x·h) = ∆q,t(x)Pλ(x; q, qβ). (2.9)

In this case the states admit an PSL(2,Z) action for which the S-matrix is given by

Sλµ = Pλ

(
t
1
2 , t

3
2 , . . . , tN−

1
2 ; q, t

)
Pµ

(
t
1
2 q−λ1 , t

3
2 q−λ2 , . . . , tN−

1
2 q−λN ; q, t

)
. (2.10)

This is precisely the S-matrix of the refined Chern-Simons theory [9].

An alternative expression for the S-matrix follows from the axioms of the modular

tensor category [20, 21] and is given by the fusion coefficients Nν
λµ defined using the simple

objects in the category

Vλ ⊗ Vµ = ⊕ν Nν
λµ Vν , (2.11)

– 4 –
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twists θλ : Vλ 7→ Vλ satisfying certain conditions [20] and the dimension of the simple

object in the category dimVλ,

Sλµ = θ−1λ θ−1µ
∑
ν

Nν
λµ θν dimVν . (2.12)

In the case of the category based on the integrable representations of ŜU(N)k the fusion

coefficients are the Littlewood-Richardson coefficients, the twists θλ = q〈λ,λ+ρ〉 are the

framing factors and the dimension of the objects in the category are the quantum dimension

of the corresponding integrable representation,

Sλµ = qκ(λ)+κ(µ)
∑
ν

Nν
λµ q

−κ(ν) dimqVν (2.13)

= qκ(λ)+κ(µ)
∑
ν

Nν
λµ q

−κ(ν) sν

(
q

1
2 , q

3
2 , . . . qN−

1
2

)
.

The fact that the above expression for Sλµ is equal to the one given in eq. (2.5) follows

from a non-trivial identity which we will discuss later.

In the case of the modular tensor category based on Uq(slN ) the objects in the category

are the irreducible highest weight modules of Uq(slN ), the fusion coefficient are the fusion

coefficients of the Macdonald polynomials N̂ν
λµ and the twists are given by θλ are given by

the framing factors fλ = t‖η
t‖2/2 q−‖η‖

2/2 and the dimensions of the highest weight modules

are give by principal specialization of Macdonald polynomials Pλ(t
1
2 , . . . , tN−

1
2 ; q, t). In

this case the eq. (2.12) gives an alternative representation of the S-matrix given by

Sλµ =
1

fλ fµ

∑
ν

N̂ν
λµ fν Pν

(
t
1
2 , . . . , tN−

1
2 ; q, t

)
. (2.14)

The fact that eq. (2.10) and eq. (2.14) are equal is a non trivial identity

Pλ

(
t
1
2 , ··, tN−

1
2 ; q, t

)
Pµ

(
t
1
2 q−λ1 , ··, tN−

1
2 q−λN ; q, t

)
=

1

fλ fµ

∑
ν

N̂ν
λµ fν Pν

(
t
1
2 , ··, tN−

1
2 ; q, t

)
(2.15)

which is proved in appendix B. We will encounter eq. (2.14) again while studying the

open string partition function corresponding to the Hopf link invariant. The left hand side

of the above identity is what appears naturally from the open string partition function,

corresponding to the Hopf link calculated using the refined topological vertex, and the right

hand side is what appears in the refined Chern-Simons theory.

3 Open string amplitudes and basis of symmetric functions

In this section we will discuss the open string partition function for certain configuration

of branes on Lagrangian cycles in C3. We will use the refined topological vertex formalism

to calculate the open string partition functions. We will argue that for branes ending on

the preferred direction of the refined topological vertex the open string partition function

should be expanded in terms of Macdonald polynomials rather then Schur polynomials.

– 5 –
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The open topological string partition function captures the invariants of holomorphic

curves with boundaries on the Lagrangian cycles in a Calabi-Yau threefold. Physically

these invariants are the BPS degeneracies of the D2-branes wrapping holomorphic curves

and ending on the D4-branes which are wrapping the Lagrangian cycles in the internal

space and filling R2 ⊂ R4 in the transverse space. If we consider a single Lagrangian cycle,

this partition function is given by [3]

Zopen = exp(Fopen) (3.1)

Fopen =

∞∑
n=1

∑
Q,R,s

NR,Q,sq
n s
(
q
n
2 − q−

n
2

)−1
λnQ TrR U

n,

where U is the holonomy of the gauge field on the D4-brane over the boundary of the

D2-brane and Q is the (relative) homology of the class of the curve on which the D2-brane

wraps. NR,Q,s are integers giving the BPS degeneracies in the transverse two dimensional

theory on the D4-brane. The BPS particles are created by the fields which carry two

dimensional spin s. The degeneracies depend on the representation R encoding different

ways D2-branes can end on D4-branes. This description can be lifted to M-theory. The

M5-branes wrap the Lagrangian submanifold and R3. The M2-branes can end on M5-

branes and give rise to BPS particles in the non-compact three dimensional space. The

little group of massive particles in three dimensions is SO(2) and these particles have spin

s under this group. The previous construction is just the reduction on the M-theory circle.

For the case of a stack of branes on C3, as shown in figure 1, the partition function is

given by

Zopen = exp

( ∞∑
n=1

1

q
n
2 − q−

n
2

TrUn
)

(3.2)

=
∏
i,j

(
1− xi qj−

1
2

)
,

where {x1, x2, x3, . . .} are the eigenvalues of the holonomy U .

A refinement of the open string partition function was given in [4] and was conjectured

to be related to the Khovanov homology of knots and links. The refined open partition

function has one extra parameter t in it (for t = q it reduces to the usual open string

partition function) and, for a single Lagrangian cycle, is given by

Z ′open = exp

( ∞∑
n=1

∑
Q,R,s1,s2

NR,Q,s1,s2q
n s1 t−n s2

(
q
n
2 − q−

n
2

)−1
λnQ TrR U

n

)
. (3.3)

The refinement includes a new parameter which captures an additional charge of the

embedding of the D4-branes. The refinement, like in the case of closed strings, can be best

understood within the M-theory. The BPS particles are charged under the little group of

massive particles SO(4) ' SU(2)L × SU(2)R. The spin of the particles which coupled to

the parameter q corresponds to U(1)L ∈ SU(2)L. With the new parameter we measure the

U(1)R ∈ SU(2)R charge.

– 6 –
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Figure 1. C3 with a stack of D-branes on one of the non-compact directions.

Consider the configuration of branes shown in the figure 1. The branes are placed

on the U(1) invariant leg of C3 corresponding to the preferred direction of the refined

topological vertex. The open string partition, from the refined vertex, is given by

Zν = (−1)νq
‖ν‖2

2 t−
‖νt‖2

2 C∅ ∅ νt(q, t) = (−1)|ν|Pνt(q
−ρ; t, q) . (3.4)

If we assume the trace of the holonomy to be given by the Schur polynomial then

Z(U) =
∑
ν

Zν TrνU (3.5)

=
∑
ν

(−1)|ν| Pνt(q
−ρ; t, q) sν(x).

The free energy is given by

Fopen = logZ(U) (3.6)

=
1

q
1
2−q−

1
2

Tr U +
1

2(q − q−1)
Tr U2 +

q(t− q)
2(1− q)(q−q−1)(1−q t)

Tr U + . . . .

It is clear that the above expansion does not match the general form of the open string

amplitudes for t 6= q. The partition function obtained by putting a brane on the preferred

– 7 –
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direction should not be different from the one obtained by putting the brane on an un-

preferred leg since both get contribution from the single holomorphic disk. Consider the

following partition function

Z ′(U) =
∑
ν

(−1)|ν| Pνt(q
−ρ; t, q)Pν(x; q, t) (3.7)

=
∏
i,j

(
1− xi qi−

1
2

)
= exp

( ∞∑
n=1

1

q
n
2 − q−

n
2

TrUn

)
.

This is exactly the open string partition function with branes on an un-preferred direction

(and the same as the one calculated using the topological vertex). This suggests that

the refined topological vertex, which was defined combinatorially as counting anisotropic

plane partitions, is in written in a basis in which the preferred direction is associated with

Macdonald polynomial. The partition function of C3 is thus given by

Z(U1, U2, U3) =
∑
λµ ν

Cλµ ν(t, q) sλ(U1) sµ(U2)Pν(U3; t, q). (3.8)

The above partition function is a symmetric function of the eigenvalues of U1, U2 and U3

and therefore can be expressed in any basis of symmetric functions. We will show in the

next section, using two examples, that open topological string partition functions calculated

using the refined vertex when expressed in the appropriate basis are independent of the

choice of preferred direction and that the S-matrix of the refined Chern-Simons theory is

equal to the refined partition function of the Hopf link [8] when expressed in the basis of

Macdonald polynomials.

4 S-matrix of the refined topological vertex

In this section we will calculate the S-matrix of the refined topological vertex (refined Hopf

link) and show that it gives the S-matrix of the refined Chern-Simons theory.

In [8], the connection between the homological knot invariants of the colored Hopf

link and the refined topological vertex was established. In this section we want to review

this computation before exploring other possible brane configurations. We compute the

open topological string amplitudes on the resolved conifold with two branes on the external

legs as depicted in figure 2. The preferred direction chosen to be along the internal leg.

According to the rules of the refined topological vertex the open amplitude is given by

Zλµ =
∑
ν

(−Q)|ν|C∅λtνt(q, t)Cµ∅ν(t, q)

=
(q
t

) |µ|
2
tn(λ

t)q−n(λ)
∑
ν

(−Q)|ν|Pν(t−ρ; q, t)Pνt(q
−ρ; t, q)sλt(q

−νt−ρ)sµt(q
−νt−ρ).

(4.1)

If we introduce one unit of framing for the brane on the horizontal leg (with representa-

tion λ) then we get

Z
(1,0)
λµ =

(q
t

) |λ|+|µ|
2
∑
ν

(−Q)|ν|Pν(t−ρ; q, t)Pνt(q
−ρ; t, q)sλt(q

−νt−ρ)sµt(q
−νt−ρ). (4.2)

– 8 –
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λ

μ

Q

Figure 2. The brane configuration giving rise to Hopf link.

The superscript (1, 0) denotes the framing for the two branes. Let U and V be the

holonomies for the two branes, the open string partition function is then given by

Z(U, V ) =
∑
λµ

Z
(1,0)
λµ TrλU TrνV

=
∑
λµ

(q
t

) |λ|+|µ|
2
∑
ν

(−Q)|ν|Pν(t−ρ; q, t)Pνt(q
−ρ; t, q)sλt(q

−νt−ρ)×

× sµt(q−νt−ρ) sλ(x) sµ(y)

=
∑
ν

(−Q)|ν|Pν(t−ρ; q, t)Pνt(q
−ρ; t, q)×

×
∏
i,j

(
1 + xi

√
q

t
t−ρiq−νi

) ∏
i,j

(
1 + yi

√
q

t
t−ρiq−νi

)
, (4.3)

where {x1, x2, . . .} and {y1, y2, . . .} are eigenvalues of U and V respectively. Z(U, V ) is a

symmetric function of {x1, x2, . . .} and {y1, y2, . . .} and if we express it in terms of Mac-

donald polynomials rather than Schur polynomials we get

Z(U, V ) =
∑
λµ

Z̃
(1,0)
λµ Pλ(x; t, q)Pµ(y; t, q) (4.4)

Z̃
(1,0)
λµ =

(q
t

) |λ|+|µ|
2
∑
ν

(−Q)|ν|Pν(t−ρ; q, t)Pνt(q
−ρ; t, q)Pλt(q

−νt−ρ; q, t)Pµt(q
−νt−ρ; q, t) .

Although the open topological string amplitude is an infinite expansion in Q when

we normalize it by the closed string partition function it becomes a polynomial of degree

|λ| + |µ| [8]. This was proved in [13] and we will closely follow their computation with

slight change in appendix C. The normalized open amplitude takes the following form

Znorm
λµ ≡

Z̃
(1,0)
λµ

Z∅ ∅
=
(q
t

) |λ|+|µ|
2
∑
σ

N̂σ
λt µt Pσ(t−ρ; q, t)

∏
(i,j)∈σ

(
1−Qti−

1
2 q−j+

1
2

)

=

(
−Q
√
q

t

)|λ|+|µ|∑
σ

N̂σ
λt µt t

‖σt‖2
2 q−

‖σ‖2
2 Pσ

(
t−ρ, Q−1

√
q

t
tρ; q, t

)
, (4.5)

– 9 –
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where N̂η
λµ are the analog of Littlewood-Richardson coefficients for the Macdonald

polynomials,

Pλ(x; q, t)Pµ(y; q, t) =
∑
σ

N̂σ
λµ Pσ(x; q, t) . (4.6)

N̂σ
λµ are rational functions of t and q with the property that N̂σ

λµ = 0 if |σ| 6= |λ| + |µ|
and N̂σ

λ ∅ = δσ λ:

N̂ = 1 , N̂ =
(1− t)(1 + q)

1− t q
(4.7)

N̂ = 1 , N̂ =
(1− q t2)(1− q2)
(1− t q)(1− t q2)

, N̂ = 0 .

The specialization of the Macdonald polynomial given in eq. (4.5) has a very important

property. To see this note that the Macdonald polynomials are symmetric functions and,

hence, can be expressed in terms of another basis of the space of symmetric functions:

the power sum symmetric functions pk(x) =
∑

i x
k
i . Consider the power sum symmetric

functions for x = {Q−1
√

q
t t
ρ, t−ρ q−σ} and lets take Q−1

√
q
t = tN , N ≥ `(σ),

pk

(
Q−1

√
q

t
tρ, t−ρ q−σ

)
= −tNk t

k
2

1− tk
+

N∑
i=1

tk(i−
1
2
) q−kσi +

tk(N+ 1
2
)

1− tk
(4.8)

=

N∑
i=1

tk(i−
1
2
) q−kσi

where we used analytic continuation for the geometric sums in t. Thus the Macdonald

polynomial for these variables is actually a polynomial in t and q. Thus for Q−1
√

q
t = tN

the normalized partition functions is given by

Znorm
λµ =

(
− q

tN+1

)|λ|+|µ|∑
σ

N̂σ
λt µt t

‖σt‖2
2 q−

‖σ‖2
2 Pσ

(
t
1
2 , t

3
2 , . . . tN−

1
2 ; q, t

)
. (4.9)

Using identity eq. (2.15) (see appendix B for proof)

1

fλ fµ

∑
σ

N̂σ
λµ fσ Pσ(t−ρ, z tρ; q, t) = Pλ(t−ρ, z tρ; q, t)Pµ(t−ρq−λ, z tρ; q, t) , (4.10)

where fσ = t
‖σt‖2

2 q−
‖σ‖2

2 we get (N ≥ `(λt), `(µt))

Znorm
λµ =

(
− q

tN+1

)|λ|+|µ|
fλt fµt Pλt

(
t
1
2 , . . . , tN−

1
2 ; q, t

)
Pµt
(
t
1
2 q−λ

t
1 , . . . , tN−

1
2 q−λ

t
N ; q, t

)
.

(4.11)

Up to framing factors the r.h.s. is exactly the S-matrix of the SU(N) refined Chern-Simons

theory [9]. This clearly shows that the refined Chern-Simons theory and the refined vertex

are both calculating the same quantities although in different basis of symmetric functions.

In writing eq. (4.1) we made a choice that the preferred direction of the refined topo-

logical vertex is the internal leg. For the same brane configuration instead of choosing the
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Q

Figure 3. The new brane configuration.

internal leg to be the preferred direction we could have chosen it to be along the external

legs. In this case one of the branes in placed on a preferred direction and the other brane

on a un-preferred one as shown in figure 3. We introduce one unit of framing for the brane

corresponding to the representation µ.

The corresponding refined partition function can be easily computed

Z
(0,1)
λµ = q

‖µt‖2
2 t−

‖µ‖2
2

∑
ν

(−Q)|ν|Cνt∅λt(t, q)Cνµ∅(q, t) (4.12)

=

∞∏
i,j=1

(1−Qq−λti−ρj t−ρi) q
‖λt‖2

2 t−
‖λ‖2

2 Pλt(t
−ρ; q, t)sµt

(
− tρ

√
q

t
,−Qq−λtt−ρ

)
.

The open amplitude can be normalized again by the closed string amplitude using the

following identity

∞∏
i,j=1

1−Qq−λti−ρj t−ρi
1−Qq−ρj t−ρi

=
∏

(i,j)∈λt
(1−Qq−λti−ρj t−ρi) (4.13)

= (−Q)|λ|q−
‖λt‖2

2 t
‖λ‖2

2

∏
(i,j)∈λt

(
1−Q

√
q

t
qa
′(i,j)t−`

′(i,j)

)
.

The normalized amplitude has a finite product rather than an infinite one

Z
(0,1) norm
λµ = (−Q)|λ|

∏
(i,j)∈λt

(
1−Q

√
q

t
qa
′(i,j)t−`

′(i,j)

)
×

×Pλt(t−ρ; q, t) sµt(−tρ−1/2q1/2,−Qq−λ
t
t−ρ). (4.14)

This last expression can be further simplified by recalling

Pλ(t−ρ, z tρ; q, t) = Pλ(t−ρ; q, t)
∏
s∈λ

(
1− z qa′(s) t−`′(s)

)
. (4.15)

The normalized open amplitude can be written in the following compact form

Z
(0,1) norm
λµ = (−Q)|λ|+|µ|Pλt

(
t−ρ, Q−1

√
q

t
tρ; q, t

)
sµt

(
q−λ

t
t−ρ, Q−1

√
q

t
tρ
)
. (4.16)
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Thus for the special values of the Kähler modulus mentioned before Q−1
√

q
t = tN , the

normalized partition function becomes

Z
(0,1) norm
λµ =

(
−
√
q

t
t−N

)|λ|+|µ|
× (4.17)

×Pλt
(
t
1
2 , t

3
2 , . . . , tN−

1
2 ; q, t

)
sµt
(
t
1
2 q−λ

t
1 , t

3
2 q−λ

t
2 , . . . , tN−

1
2 q−λ

t
N

)
.

In terms of the holonomies U and V the open string partition function is given by

Z(U, V ) =
∑
λµ

Z
(0,1) norm
λµ Pλ(U ; t, q) sµ(V ) (4.18)

=
∑
λ

(
−
√
q

t
t−N

)|λ|
Pλt
(
t
1
2 , t

3
2 , . . . , tN−

1
2 ; q, t

)
Pλ(U ; t, q)×

×
N∏

i,j=1

(
1− yi

√
q

t
t−N tj−

1
2 q−λ

t
j

)
.

If express Z(U, V ) in terms of Macdonald polynomials we get

Z(U, V ) =
∑
λµ

Z̃
(0,1)
λµ Pλ(U ; t, q)Pµ(V ; t, q) (4.19)

Z̃
(0,1)
λµ =

(
−
√
q

t
t−N

)|λ|+|µ|
×

× Pλt
(
t
1
2 , t

3
2 , . . . , tN−

1
2 ; q, t

)
Pµt
(
t
1
2 q−λ

t
1 , t

3
2 q−λ

t
2 , . . . , tN−

1
2 q−λ

t
N ; q, t

)
,

which is the same as eq. (4.11) up to framing factors.

5 Conclusions

We have shown that the open string partition function, corresponding to Hopf link, ex-

pressed in the basis of Macdonald polynomials gives the S-matrix of the Chern-Simons

theory. This suggests that the refined Chern-Simons theory might be the underlying the-

ory of refined topological vertex just as the Chern-Simons theory is the underlying theory

of the topological vertex. It would be interesting to derive a topological vertex, follow-

ing [22], from the refined Chern-Simons theory and examine its relation with the refined

topological vertex.

We have also argued that topological field theory of the refined Chern-Simons is the

same as the Kirillov’s modular tensor category based on the quantum group Uq(slN ) [15].

A deformation of the G/G WZW theory which seems closely related to the Kirillov’s

construction was studied by Gorsky and Nekrasov [23] in the context of integrable systems.

The deformed theory has features which seem closely related to the refined Chern-Simons

theory [24].
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Figure 4. The figure on the left depicts the convention used in [7], and the figure on the right

shows the present convention. λ = {5, 3, 3, 2, 1, 1}.
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A Some useful identities

In this section, we want to review our notations, conventions and collect some of the useful

formulas for the derivations. We want to warn the reader that the convention we follow

in this note is different from the one used in [7]. The difference comes from the pictorial

representation of the Young diagrams, depicted in figure 4. In [7], for a given representation

λ = {λ1, λ2, . . .},we illustrated the corresponding Young diagram with columns of height

λi. The arm length a(i, j) and leg length `(i, j) of a given box (i, j) in the diagram were

defined as the number of boxes to the right of that box and above that box, respectively. In

this note we follow the more conventional notation shown on the right of figure 4 where λi’s

are the number of boxes in the ith row. The arm and leg lengths are defined accordingly.

In addition to the arm and leg lengths, we define the co-arm length a′(i, j) and co-leg

length `′(i, j)

a(i, j) = νi − j , `(i, j) = νtj − i (A.1)

a′(i, j) = j − 1 , `′(i, j) = i− 1 . (A.2)

– 13 –



J
H
E
P
0
4
(
2
0
1
2
)
0
4
6

Note that

aλ(i, j) = `λt(j, i), `λ(i, j) = aλt(j, i) , (A.3)

with (i, j) ∈ λ and (j, i) ∈ λt. The difference in the conventions reflects also on some

identities used in [7], here we use

n(λ) =

`(λ)∑
i=1

(i− 1)λi =
1

2

`(λ)∑
i=1

λti(λ
t
i − 1)

=
∑

(i,j)∈λ

`(i, j) =
∑

(i,j)∈λ

`′(i, j) =
‖λt‖2

2
− λ

2
, (A.4)

n(λt) =

`(λt)∑
i=1

(i− 1)λti =
1

2

`(λt)∑
i=1

λi(λi − 1)

=
∑

(i,j)∈λ

a(i, j) =
∑

(i,j)∈λ

a′(i, j) =
‖λ‖2

2
− λ

2
, (A.5)

with `(λ) being the number of non-zero λi’s, or in other words, it is the number of rows in

the Young diagram. The hook length h(i, j) and the content c(i, j) are defined as

h(i, j) = a(i, j) + `(i, j) + 1, c(i, j) = j − i , (A.6)

which satisfy ∑
(i,j)∈λ

h(i, j) = n(λt) + n(λ) + |λ|, (A.7)

∑
(i,j)∈λ

c(i, j) = n(λt)− n(λ). (A.8)

The refined topological vertex in this convention is given by

Cλµ ν(t, q) =
(q
t

) ||µ||2
2
t
κ(µ)
2 q

||ν||2
2 Z̃ν(t, q)

∑
η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t
−ρ q−ν) sµ/η(t

−νt q−ρ) ,

where sλ/η(x) is the skew-Schur function, ρ = {−1
2 ,−

3
2 ,−

5
2 , · · · } and Z̃ν(t, q) is given by

Z̃ν(t, q) =
∏

(i,j)∈ν

(
1− qa(i,j) t`(i,j)+1

)−1
, (A.9)

which is related to the Macdonald polynomials

t
‖νt‖2

2 Z̃ν(t, q) = Pν(t−ρ; q, t), (A.10)

q
‖ν‖2

2 Z̃νt(q, t) = Pνt(q
−ρ; t, q). (A.11)

For the Macdonald polynomials with this special set of argument we have

Pλ(tρ; q, t) = (−1)|λ|qn(λ
t)t−n(λ)Pλ(t−ρ; q, t). (A.12)
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The Macdonald polynomials also satisfy

Pλ(x; q, t) = Pλ(x; q−1, t−1) (A.13)

For completeness, let us also review some identities regarding to Schur functions and Mac-

Donald polynomials:

sλ(x)sµ(x) =
∑
η

Nη
λµsη(x) , (A.14)

sλ/µ(x) =
∑
η

Nλ
µηsη(x) , (A.15)

Pλ(x; q, t)Pµ(x; q, t) =
∑
η

N̂η
λµPη(x; q, t) , (A.16)

sη(x) =
∑
σ

UησPσ(x; q, t) . (A.17)

The following relations among Macdonald polynomials prove to be very useful for our

computations (Page 332, Eq. (6.6) of [14])

Pµ(q−λ t−ρ; q, t)

Pµ(t−ρ; q, t)
=
Pλ(q−µ t−ρ; q, t)

Pλ(t−ρ; q, t)
, (A.18)

Pσ(t−ρ, z tρ; q, t) = Pσ(t−ρ; q, t)
∏
s∈σ

(
1− z qa′(s) t−`′(s)

)
. (A.19)

The following sum rules are essential for vertex computations

∑
η

sη/λ(x)sη/µ(y) =

∞∏
i,j=1

(1− xiyj)−1
∑
τ

sµ/τ (x)sλ/τ (y) . (A.20)

∑
η

sηt/λ(x)sη/µ(y) =

∞∏
i,j=1

(1 + xiyj)
∑
τ

sµt/τ (x)sλt/τ t(y) , (A.21)

∑
η

Pη(x; q, t)Pηt(x; t, q) =

∞∏
i,j=1

(1 + xiyj) . (A.22)

We have considered the normalized amplitudes, both the open and closed amplitudes are

infinite series in the Kähler parameters, however, their ratio is finite as a result of the

following identity

∞∏
i,j=1

1−Qq−λi+j−1/2ti−1/2

1−Qqj−1/2ti−1/2
=
∏
s∈λ

(
1−Q

√
t

q
q−a

′(s)t`(s)
)
. (A.23)

B A Macdonald polynomial identity

In this section, we want to prove the identity eq. (2.15) we used to show the equivalence of

the open topological string amplitudes for two different choices of the preferred direction of

the refined topological vertex. Our derivation relies on the results of [25]. They showed that
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the normalized one- and two-point function of the Macdonald polynomials with measure

∆q,t times a Gaussian are given by [25]

〈Pλ(x; q, t)〉 = t−
|λ|
2 q
‖λ‖2

2 t−
‖λt‖2

2 Pλ(1, t, . . . , tN−1; q, t) , (B.1)

〈Pλ(x; q, t)Pµ(x; q, t)〉 = tN |µ|t
|µ|
2
− |λ|

2 q
‖λ‖2+‖µ‖2

2 t−
‖λt‖2+‖µt‖2

2 (B.2)

× Pλ(1, t, . . . , tN−1; q, t)Pµ(qλ1 , qλ2t−1, . . . , qλN t−(N−1); q, t) .

By eq. A.16 we know that these correlators are related to each other.

tN |µ|t
|µ|
2
− |λ|

2 q
‖λ‖2+‖µ‖2

2 t−
‖λt‖2+‖µt‖2

2 ×
× Pλ(t, t2, . . . , tN ; q, t)Pµ(qλ1t−1, qλ2t−2, . . . , qλN t−N ; q, t)

=
∑
η

N̂η
λµt
− |η|

2 q
‖η‖2

2 t−
‖ηt‖2

2 Pη(t, t
2, . . . , tN ; q, t) . (B.3)

This last expression is not in the form we used above, however, it is straightforward to

manipulate this identity into the desired form. Let us multiply both sides by t−N(|λ|+|µ|),

and note that N̂η
λµ vanishes unless |η| = |λ|+ |µ| is satisfied. Then we get

q
‖λ‖2+‖µ‖2

2 t−
‖λt‖2+‖µt‖2

2 ×

× Pλ(t−1/2, t−3/2, . . . , t−N+1/2; q, t)Pµ(qλ1t−1/2, qλ2t−3/2, . . . , qλN t−N+1/2; q, t)

=
∑
η

N̂η
λµq

‖η‖2
2 t−

‖ηt‖2
2 Pη(t

−1/2, t−3/2, . . . , t−N+1/2; q, t) .

(B.4)

Taking (q, t) 7→ (q−1, t−1) and keeping in mind that Pλ(x; q−1, t−1) = Pλ(x; q, t) and

N̂ν
λµ(q−1, t−1) = N̂ν

λµ(q, t) we get eq. (2.15).

C Normalized open string amplitude corresponding to the Hopf link

In this section, we want to present the details of the derivation of eq. (4.5). We will ignore

the factors related to framing for the notational ease. Let us begin with eq. (4.4):

Z̃
(1,0)
λµ =

∑
ν

(−Q)|ν|Pν(t−ρ; q, t)Pνt(q
−ρ; t, q)Pλ(q−νt−ρ; q, t)Pµ(q−νt−ρ; q, t) . (C.1)

Note that the product of two Macdonald polynomials with the same arguments can be

expanded in Macdonald polynomials (eq. (A.16)) therefore

Z̃
(1,0)
λµ =

∑
ν,σ

(−Q)|ν|N̂σ
λµ Pνt(q

−ρ; t, q)Pν(t−ρ; q, t)Pσ(t−ρq−ν ; q, t) . (C.2)

The ν-sum can be explicitly performed after using eq. A.18, the amplitude becomes

Z̃
(1,0)
λµ =

∑
σ

N̂σ
λµPσ(t−ρ; q, t)

∞∏
i,j=1

(
1−Qq−σi−ρj t−ρi

)
. (C.3)
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Let us finally normalize by the closed amplitude (eq. A.23)

Z̃
(1,0) norm
λµ =

∑
σ

N̂σ
λµ Pσ(t−ρ; q, t)

∏
(i,j)∈σ

(
1−Qq−j+

1
2 ti−

1
2

)
. (C.4)

This last expression can be even further simplified using eq. (A.19) to get the result we

have given in the main text:

Z̃
(1,0) norm
λµ = (−Q)|λ|+|µ|

∑
σ

N̂σ
λµ t

‖σt‖2
2 q−

‖σ‖2
2 Pσ

(
t−ρ, Q−1

√
q

t
tρ; q, t

)
. (C.5)
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