1,545 research outputs found
Recommended from our members
Feasibility study and design concept for an orbiting ice-penetrating radar sounder to characterize in three-dimensions the Europan ice mantle down to (and including) any ice/ocean interface
This report presents a radar sounding model based on the range of current working hypotheses for the nature of Europa's icy shell.Institute for Geophysic
Simple choreographies of the planar Newtonian -body Problem
In the -body problem, a simple choreography is a periodic solution, where
all masses chase each other on a single loop. In this paper we prove that for
the planar Newtonian -body problem with equal masses, , there are
at least different main simple choreographies. This
confirms a conjecture given by Chenciner and etc. in \cite{CGMS02}.Comment: 31pages, 6 figures. Refinements in notations and proof
Dynamical Localization: Hydrogen Atoms in Magnetic and Microwave fields
We show that dynamical localization for excited hydrogen atoms in magnetic
and microwave fields takes place at quite low microwave frequency much lower
than the Kepler frequency. The estimates of localization length are given for
different parameter regimes, showing that the quantum delocalization border
drops significantly as compared to the case of zero magnetic field. This opens
up broad possibilities for laboratory investigations.Comment: revtex, 11 pages, 3 figures, to appear in Phys. Rev. A, Feb (1997
Study of heterogeneous nucleation of eutectic Si in high-purity Al-Si alloys with Sr addition
The official published version can be accessed from the link below - Copyright @ 2010 The Minerals, Metals & Materials Society and ASM InternationalAl-5 wt pct Si master-alloys with controlled Sr and/or P addition/s were produced using super purity Al 99.99 wt pct and Si 99.999 wt pct materials in an arc melter. The master-alloy was melt-spun resulting in the production of thin ribbons. The Al matrix of the ribbons contained entrained Al-Si eutectic droplets that were subsequently investigated. Differential scanning calorimetry, thermodynamic calculations, and transmission electron microscopy techniques were employed to examine the effect of the Sr and P additions on eutectic undercoolings and nucleation phenomenon. Results indicate that, unlike P, Sr does not promote nucleation. Increasing Sr additions depressed the eutectic nucleation temperature. This may be a result of the formation of a Sr phase that could consume or detrimentally affect potent AlP nucleation sites.This work is financially supported by the
Higher Education Commission of Pakistan and managerially supported from the OAD
The occurrence and characterization of Campylobacter jejuni and C. coli in organic pigs and their outdoor environment
The occurrence and species distribution of thermophilic Campylobacter was investigated in organic outdoor pigs. An increased exposure of outdoor pigs to C. jejuni from the environment may cause a shift from a normal dominance of C. coli to more C. jejuni, which may imply a concern of reduced food safety.
Bacteriological methods for determination of Campylobacter excretion level were combined with colony-blot hybridization and real-time PCR for specific detection of C. jejuni in pigs. Campylobacter was isolated from pigs (n = 47), paddock environment (n = 126) and wildlife (n = 44), identified to species by real-time PCR and sub-typed by serotyping (Penner) and pulse-field gel electrophorsis (PFGE) genotyping.
All pigs excreted Campylobacter (103–107 CFU g1 faeces) from the age of 8–13-weeks old. C. jejuni was found in 29% of pigs in three consecutive trials and always in minority to C. coli (0.3–46%). C. jejuni and C. coli were isolated from 10% and 29% of the environmental samples, respectively, while crow-birds and rats harboured C. jejuni. Individual pigs hosted several strains (up to nine serotypes). The paddock environment was contaminated with C. coli serotypes similar to pig isolates, while most of the C. jejuni serotypes differed. C. jejuni isolates of different origin comprised few similar serotypes, just one identical genotype was common between pigs, environment and birds.
In conclusion, the occurrence of C. jejuni varied considerably between the three groups of outdoor pigs. Furthermore, transfer of C. jejuni to the outdoor pigs from the nearby environment was not predominant according to the subtype dissimilarities of the obtained isolates
Formation of Small-Scale Condensations in the Molecular Clouds via Thermal Instability
A systematic study of the linear thermal instability of a self-gravitating
magnetic molecular cloud is carried out for the case when the unperturbed
background is subject to local expansion or contraction. We consider the
ambipolar diffusion, or ion-neutral friction on the perturbed states. In this
way, we obtain a non-dimensional characteristic equation that reduces to the
prior characteristic equation in the non-gravitating stationary background. By
parametric manipulation of this characteristic equation, we conclude that there
are, not only oblate condensation forming solutions, but also prolate solutions
according to local expansion or contraction of the background. We obtain the
conditions for existence of the Field lengths that thermal instability in the
molecular clouds can occur. If these conditions establish, small-scale
condensations in the form of spherical, oblate, or prolate may be produced via
thermal instability.Comment: 16 page, accepted by Ap&S
Quantum Computing of Quantum Chaos in the Kicked Rotator Model
We investigate a quantum algorithm which simulates efficiently the quantum
kicked rotator model, a system which displays rich physical properties, and
enables to study problems of quantum chaos, atomic physics and localization of
electrons in solids. The effects of errors in gate operations are tested on
this algorithm in numerical simulations with up to 20 qubits. In this way
various physical quantities are investigated. Some of them, such as second
moment of probability distribution and tunneling transitions through invariant
curves are shown to be particularly sensitive to errors. However,
investigations of the fidelity and Wigner and Husimi distributions show that
these physical quantities are robust in presence of imperfections. This implies
that the algorithm can simulate the dynamics of quantum chaos in presence of a
moderate amount of noise.Comment: research at Quantware MIPS Center http://www.quantware.ups-tlse.fr,
revtex 11 pages, 13 figs, 2 figs and discussion adde
Theoretical Evaluations of the Fission Cross Section of the 77 eV Isomer of 235-U
We have developed models of the fission barrier (barrier heights and
transition state spectra) that reproduce reasonably well the measured fission
cross section of U from neutron energy of 1 keV to 2 MeV. From these
models we have calculated the fission cross section of the 77 eV isomer of
U over the same energy range. We find that the ratio of the isomer
cross section to that of the ground state lies between about 0.45 and 0.55 at
low neutron energies. The cross sections become approximately equal above 1
MeV. The ratio of the neutron capture cross section to the fission cross
section for the isomer is predicted to be about a factor of 3 larger for the
isomer than for the ground state of U at keV neutron energies. We have
also calculated the cross section for the population of the isomer by inelastic
neutron scattering form the U ground state. We find that the isomer is
strongly populated, and for the cross section
leading to the population of the isomer is of the order of 0.5 barn. Thus,
neutron reaction network calculations involving the uranium isotopes in a high
neutron fluence are likely to be affected by the 77 eV isomer of U.
With these same models the fission cross sections of U and U
can be reproduced approximately using only minor adjustments to the barrier
heights. With the significant lowering of the outer barrier that is expected
for the outer barrier the general behavior of the fission cross section of
Pu can also be reproduced.Comment: 17 pages including 8 figure
Control of Dynamical Localization
Control over the quantum dynamics of chaotic kicked rotor systems is
demonstrated. Specifically, control over a number of quantum coherent phenomena
is achieved by a simple modification of the kicking field. These include the
enhancement of the dynamical localization length, the introduction of classical
anomalous diffusion assisted control for systems far from the semiclassical
regime, and the observation of a variety of strongly nonexponential lineshapes
for dynamical localization. The results provide excellent examples of
controlled quantum dynamics in a system that is classically chaotic and offer
new opportunities to explore quantum fluctuations and correlations in quantum
chaos.Comment: 9 pages, 7 figures, to appear in Physical Review
Coherent Manipulation of Quantum Delta-kicked Dynamics: Faster-than-classical Anomalous Diffusion
Large transporting regular islands are found in the classical phase space of
a modified kicked rotor system in which the kicking potential is reversed after
every two kicks. The corresponding quantum system, for a variety of system
parameters and over long time scales, is shown to display energy absorption
that is significantly faster than that associated with the underlying classical
anomalous diffusion. The results are of interest to both areas of quantum chaos
and quantum control.Comment: 6 pages, 4 figures, to appear in Physical Review
- …
