12,667 research outputs found
Maternal nutritional status, C1 metabolism and offspring DNA methylation: a review of current evidence in human subjects.
: Evidence is growing for the long-term effects of environmental factors during early-life on later disease susceptibility. It is believed that epigenetic mechanisms (changes in gene function not mediated by DNA sequence alteration), particularly DNA methylation, play a role in these processes. This paper reviews the current state of knowledge of the involvement of C1 metabolism and methyl donors and cofactors in maternal diet-induced DNA methylation changes in utero as an epigenetic mechanism. Methyl groups for DNA methylation are mostly derived from the diet and supplied through C1 metabolism by way of choline, betaine, methionine or folate, with involvement of riboflavin and vitamins B6 and B12 as cofactors. Mouse models have shown that epigenetic features, for example DNA methylation, can be altered by periconceptional nutritional interventions such as folate supplementation, thereby changing offspring phenotype. Evidence of early nutrient-induced epigenetic change in human subjects is scant, but it is known that during pregnancy C1 metabolism has to cope with high fetal demands for folate and choline needed for neural tube closure and normal development. Retrospective studies investigating the effect of famine or season during pregnancy indicate that variation in early environmental exposure in utero leads to differences in DNA methylation of offspring. This may affect gene expression in the offspring. Further research is needed to examine the real impact of maternal nutrient availability on DNA methylation in the developing fetus
The Emergent Role of the Social Designer
This paper responds to the Academic Design Management Conference, Design Management Futures theme. It answers questions relating to the way in which we think about the future of Design Management, and the way in which Design Management may need to adapt to the changing nature of design and new management theories. This piece draws on the work of an interdisciplinary team of researchers from the fields of Engineering, Sociology and Graphic Design, and their experience in the areas of user-engagement, anti-oppressive education/pedagogy and inclusive design. This position paper is a reflective piece that examines the value of designers, engineers and sociologists working together. It puts forward the question ‘What can designers and engineers learn from the emancipatory paradigm of the Social Scientist?’ Reflections from a UK-based team of undergraduate designers and engineers provide insight to their experience of engaging with the user through an inclusive design project. They cast light upon their experience of cross-faculty studies, interdisciplinary collaborations and both the challenges and benefits to working with different user groups. This paper concludes by examining the practical implications for Design Management, providing insights for Design Management education, research and practice
Urinary N-methylnicotinamide and β-aminoisobutyric acid predict catch-up growth in undernourished Brazilian children
Appreciating interconnectivity between habitats is key to Blue Carbon management
We welcome the recent synthesis by
Howard et al. (2017), which drew
attention to the role of marine systems
and natural carbon sequestration
in the oceans as a fundamental
aspect of climate-change
mitigation.
The importance of long-term
carbon
storage in marine habitats (ie “blue
carbon”) is rapidly gaining recognition
and is increasingly a
focus of national and international
attempts to mitigate rising atmospheric
emissions of carbon dioxide.
However, effectively managing blue
carbon requires an appreciation of
the inherent connectivity between
marine populations and habitats.
More so than their terrestrial counterparts,
marine ecosystems are
“open”, with high rates of transfer of
energy, matter, genetic material, and
species across regional seascapes
(Kinlan and Gaines 2003). We suggest
that policy frameworks, and the
science underpinning them, should
focus not only on carbon sink habitats
but also on carbon source habitats,
which play critical roles in
marine carbon cycling and natural
carbon sequestration in the oceans
Anomaly-Free Supersymmetric SO(2N+2)/U(N+1) sigma-Model Based on the SO(2N+1) Lie Algebra of the Fermion Operators
The extended supersymmetric (SUSY) sigma-model has been proposed on the bases
of SO(2N+1) Lie algebra spanned by fermion annihilation-creation operators and
pair operators. The canonical transformation, extension of an SO(2N) Bogoliubov
transformation to an SO(2N+1) group, is introduced. Embedding the SO(2N+1)
group into an SO(2N+2) group and using SO(2N+2)/U(N+1) coset variables, we have
investigated the SUSY sigma-model on the Kaehler manifold, the coset space
SO(2N+2)/U(N+1). We have constructed the Killing potential, extension of the
potential in the SO(2N)/U(N) coset space to that in the SO(2N+2)/U(N+1) coset
space. It is equivalent to the generalized density matrix whose diagonal-block
part is related to a reduced scalar potential with a Fayet-Ilipoulos term. The
f-deformed reduced scalar potential is optimized with respect to vacuum
expectation value of the sigma-model fields and a solution for one of the
SO(2N+1) group parameters has been obtained. The solution, however, is only a
small part of all solutions obtained from anomaly-free SUSY coset models. To
construct the coset models consistently, we must embed a coset coordinate in an
anomaly-free spinor representation (rep) of SO(2N+2) group and give
corresponding Kaehler and Killing potentials for an anomaly-free
SO(2N+2)/U(N+1) model based on each positive chiral spinor rep. Using such
mathematical manipulation we construct successfully the anomaly-free
SO(2N+2)/U(N+1) SUSY sigma-model and investigate new aspects which have never
been seen in the SUSY sigma-model on the Kaehler coset space SO(2N)/U(N). We
reach a f-deformed reduced scalar potential. It is minimized with respect to
the vacuum expectation value of anomaly-free SUSY sigma-model fields. Thus we
find an interesting f-deformed solution very different from the previous
solution for an anomaly-free SO(2.5+2)/(SU(5+1)*U(1)) SUSY sigma-model.Comment: 24 pages, no fiure
Complement C3 variant and the risk of age-related macular degeneration
Background: Age-related macular degeneration is the most common cause of blindness in Western populations. Susceptibility is influenced by age and by genetic and environmental factors. Complement activation is implicated in the pathogenesis.Methods: We tested for an association between age-related macular degeneration and 13 single-nucleotide polymorphisms (SNPs) spanning the complement genes C3 and C5 in case subjects and control subjects from the southeastern region of England. All subjects were examined by an ophthalmologist and had independent grading of fundus photographs to confirm their disease status. To test for replication of the most significant findings, we genotyped a set of Scottish cases and controls.Results: The common functional polymorphism rs2230199 (Arg80Gly) in the C3 gene, corresponding to the electrophoretic variants C3S (slow) and C3F (fast), was strongly associated with age-related macular degeneration in both the English group (603 cases and 350 controls, P=5.9 x 10(sup -5)) and the Scottish group (244 cases and 351 controls, P=5.0 x 10(sup -5)). The odds ratio for age-related macular degeneration in C3 S/F heterozygotes as compared with S/S homozygotes was 1.7 (95% confidence interval [CI], 1.3 to 2.1); for F/F homozygotes, the odds ratio was 2.6 (95% CI, 1.6 to 4.1). The estimated population attributable risk for C3F was 22%.Conclusions: Complement C3 is important in the pathogenesis of age-related macular degeneration. This finding further underscores the influence of the complement pathway in the pathogenesis of this disease
Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene
The quantum-Hall-effect (QHE) occurs in topologically-ordered states of
two-dimensional (2d) electron-systems in which an insulating bulk-state
coexists with protected 1d conducting edge-states. Owing to a unique
topologically imposed edge-bulk correspondence these edge-states are endowed
with universal properties such as fractionally-charged quasiparticles and
interference-patterns, which make them indispensable components for QH-based
quantum-computation and other applications. The precise edge-bulk
correspondence, conjectured theoretically in the limit of sharp edges, is
difficult to realize in conventional semiconductor-based electron systems where
soft boundaries lead to edge-state reconstruction. Using scanning-tunneling
microscopy and spectroscopy to follow the spatial evolution of bulk
Landau-levels towards a zigzag edge of graphene supported above a graphite
substrate we demonstrate that in this system it is possible to realize
atomically sharp edges with no edge-state reconstruction. Our results single
out graphene as a system where the edge-state structure can be controlled and
the universal properties directly probed.Comment: 16 pages, 4 figure
Seminar Users in the Arabic Twitter Sphere
We introduce the notion of "seminar users", who are social media users
engaged in propaganda in support of a political entity. We develop a framework
that can identify such users with 84.4% precision and 76.1% recall. While our
dataset is from the Arab region, omitting language-specific features has only a
minor impact on classification performance, and thus, our approach could work
for detecting seminar users in other parts of the world and in other languages.
We further explored a controversial political topic to observe the prevalence
and potential potency of such users. In our case study, we found that 25% of
the users engaged in the topic are in fact seminar users and their tweets make
nearly a third of the on-topic tweets. Moreover, they are often successful in
affecting mainstream discourse with coordinated hashtag campaigns.Comment: to appear in SocInfo 201
Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T- Cell Development in Offspring
Background
Breastfeeding protects against illnesses and death in hazardous environments, an
effect partly mediated by improved immune function. One hypothesis suggests that
factors within milk supplement the inadequate immune response of the offspring,
but this has not been able to account for a series of observations showing that
factors within maternally derived milk may supplement the development of the
immune system through a direct effect on the primary lymphoid organs. In a
previous human study we reported evidence suggesting a link between IL-7 in
breast milk and the thymic output of infants. Here we report evidence in mice of
direct action of maternally-derived IL-7 on T cell development in the offspring.
Methods and Findings
We have used recombinant IL-7 labelled with a fluorescent dye to trace the
movement in live mice of IL-7 from the stomach across the gut and into the
lymphoid tissues. To validate the functional ability of maternally derived IL-
7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets
of thymocytes and populations of peripheral T cells were significantly higher
than those found in knock-out mice receiving milk from IL-7 knock-out mothers.
Conclusions/Significance Our study provides direct evidence that interleukin 7,
a factor which is critical in the development of T lymphocytes, when maternally
derived can transfer across the intestine of the offspring, increase T cell
production in the thymus and support the survival of T cells in the peripheral
secondary lymphoid tissue
- …
