21,523 research outputs found
Bounded Refinement Types
We present a notion of bounded quantification for refinement types and show
how it expands the expressiveness of refinement typing by using it to develop
typed combinators for: (1) relational algebra and safe database access, (2)
Floyd-Hoare logic within a state transformer monad equipped with combinators
for branching and looping, and (3) using the above to implement a refined IO
monad that tracks capabilities and resource usage. This leap in expressiveness
comes via a translation to "ghost" functions, which lets us retain the
automated and decidable SMT based checking and inference that makes refinement
typing effective in practice.Comment: 14 pages, International Conference on Functional Programming, ICFP
201
Blackbody radiation shift in 87Rb frequency standard
The operation of atomic clocks is generally carried out at room temperature,
whereas the definition of the second refers to the clock transition in an atom
at absolute zero. This implies that the clock transition frequency should be
corrected in practice for the effect of finite temperature of which the leading
contributor is the blackbody radiation (BBR) shift. Experimental measurements
of the BBR shifts are difficult. In this work, we have calculated the blackbody
radiation shift of the ground-state hyperfine microwave transition in 87Rb
using the relativistic all-order method and carried out detailed evaluation of
the accuracy of our final value. Particular care is taken to accurately account
for the contributions from highly-excited states. Our predicted value for the
Stark coefficient, k_S=-1.240(4)\times 10^{-10}\text{Hz/(V/m)}^{2} is three
times more accurate than the previous calculation [1].Comment: 7 page
Information Use by PhD Students in Agriculture and Biology: A Dissertation Citation Analysis
This article reports the findings of a study conducted to examine the types of information used by graduate students in the fields of biological and agricultural sciences at Iowa State University (ISU). The citations of doctoral dissertations submitted in nine agriculture and biological science subject fields (crop production and physiology; molecular, cellular, and developmental biology; entomology; genetics; microbiology; plant breeding; plant pathology; plant physiology; and soil science) at ISU from 1997–2006 were analyzed. The article discusses the types and ages of resources cited in the different subject fields studied. The most cited journals in each discipline were identified, and the journal title dispersion was examined
Foldy-Wouthuysen Transformation in Strong Magnetic Fields and Relativistic Corrections for Quantum Cyclotron Energy Levels
We carry out a direct, iterative Foldy--Wouthuysen transformation of a
general Dirac Hamiltonian coupled to an electromagnetic field, including the
anomalous magnetic moment. The transformation is carried out through an
iterative disentangling of the particle and antiparticle Hamiltonians, in the
expansion for higher orders of the momenta. The time-derivative term from the
unitary transformation is found to be crucial in supplementing the transverse
component of the electric field in higher orders. Final expressions are
obtained for general combined electric and magnetic fields, including strong
magnetic fields. The time-derivative of the electric field is shown to enter
only in the seventh order of the fine-structure constant if the transformation
is carried out in the standard fashion. We put special emphasis on the case of
strong fields, which are important for a number of applications, such as
electrons bound in Penning traps.Comment: 12 pages; RevTe
Intraoperative Organ Motion Models with an Ensemble of Conditional Generative Adversarial Networks
In this paper, we describe how a patient-specific, ultrasound-probe-induced
prostate motion model can be directly generated from a single preoperative MR
image. Our motion model allows for sampling from the conditional distribution
of dense displacement fields, is encoded by a generative neural network
conditioned on a medical image, and accepts random noise as additional input.
The generative network is trained by a minimax optimisation with a second
discriminative neural network, tasked to distinguish generated samples from
training motion data. In this work, we propose that 1) jointly optimising a
third conditioning neural network that pre-processes the input image, can
effectively extract patient-specific features for conditioning; and 2)
combining multiple generative models trained separately with heuristically
pre-disjointed training data sets can adequately mitigate the problem of mode
collapse. Trained with diagnostic T2-weighted MR images from 143 real patients
and 73,216 3D dense displacement fields from finite element simulations of
intraoperative prostate motion due to transrectal ultrasound probe pressure,
the proposed models produced physically-plausible patient-specific motion of
prostate glands. The ability to capture biomechanically simulated motion was
evaluated using two errors representing generalisability and specificity of the
model. The median values, calculated from a 10-fold cross-validation, were
2.8+/-0.3 mm and 1.7+/-0.1 mm, respectively. We conclude that the introduced
approach demonstrates the feasibility of applying state-of-the-art machine
learning algorithms to generate organ motion models from patient images, and
shows significant promise for future research.Comment: Accepted to MICCAI 201
Excitation energies, hyperfine constants, E1, E2, M1 transition rates, and lifetimes of (6s2)nl states in Tl I and Pb II
Energies of np (n=6-9), ns (n=7-9), nd (n=6-8), and nf (n=5-6) states in Tl I
and Pb II are obtained using relativistic many-body perturbation theory.
Reduced matrix elements, oscillator strengths, transition rates, and lifetimes
are determined for the 72 possible electric-dipole transitions.
Electric-quadrupole and magnetic-dipole matrix elements are evaluated to obtain
np(3/2) - mp(1/2) (n,m=6,7) transition rates. Hyperfine constants A are
evaluated for a number of states in 205Tl. First-, second-, third-, and
all-order corrections to the energies and matrix elements and first- and
second-order Breit corrections to energies are calculated. In our
implementation of the all-order method, single and double excitations of
Dirac-Fock wave functions are included to all orders in perturbation theory.
These calculations provide a theoretical benchmark for comparison with
experiment and theory.Comment: twelve tables, no figure
Quantum walks on Cayley graphs
We address the problem of the construction of quantum walks on Cayley graphs.
Our main motivation is the relationship between quantum algorithms and quantum
walks. In particular, we discuss the choice of the dimension of the local
Hilbert space and consider various classes of graphs on which the structure of
quantum walks may differ. We completely characterise quantum walks on free
groups and present partial results on more general cases. Some examples are
given, including a family of quantum walks on the hypercube involving a
Clifford Algebra.Comment: J. Phys. A (accepted for publication
Direct Optical Coupling to an Unoccupied Dirac Surface State in the Topological Insulator BiSe
We characterize the occupied and unoccupied electronic structure of the
topological insulator BiSe by one-photon and two-photon angle-resolved
photoemission spectroscopy and slab band structure calculations. We reveal a
second, unoccupied Dirac surface state with similar electronic structure and
physical origin to the well-known topological surface state. This state is
energetically located 1.5 eV above the conduction band, which permits it to be
directly excited by the output of a Ti:Sapphire laser. This discovery
demonstrates the feasibility of direct ultrafast optical coupling to a
topologically protected, spin-textured surface state.Comment: Accepted to Physical Review Letter
The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception
Reproduction in angiosperms depends on communication processes of the male gametophyte (pollen) with the female floral organs (pistil, transmitting tissue) and the female gametophyte (embryo sac). Pollen-pistil interactions control pollen hydration, germination and growth through the stylar tissue. The female gametophyte is involved in guiding the growing pollen tube towards the micropyle and embryo sac. One of the two synergids flanking the egg cell starts to degenerate and becomes receptive for pollen tube entry. Pollen tube growth arrests and the tip of the pollen tube ruptures to release the sperm cells. Failures in the mutual interaction between the synergid and the pollen tube necessarily impair fertility. But the control of pollen tube reception is not understood. We isolated a semisterile, female gametophytic mutant from Arabidopsis thaliana, named feronia after the Etruscan goddess of fertility, which impairs this process. In the feronia mutant, embryo sac development and pollen tube guidance were unaffected in all ovules, although one half of the ovules bore mutant female gametophytes. However, when the pollen tube entered the receptive synergid of a feronia mutant female gametophyte, it continued to grow, failed to rupture and release the sperm cells, and invaded the embryo sac. Thus, the feronia mutation disrupts the interaction between the male and female gametophyte required to elicit these processes. Frequently, mutant embryo sacs received supernumerary pollen tubes. We analysed feronia with synergid-specific GUS marker lines, which demonstrated that the specification and differentiation of the synergids was normal. However, GUS expression in mutant gametophytes persisted after pollen tube entry, in contrast to wild-type embryo sacs where it rapidly decreased. Apparently, the failure in pollen tube reception results in the continued expression of synergid-specific genes, probably leading to an extended expression of a potential pollen tube attractant
Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard.
PURPOSE: To evaluate the diagnostic performance of multiparametric (MP) magnetic resonance (MR) imaging for prostate cancer detection by using transperineal template prostate mapping (TTPM) biopsies as the reference standard and to determine the potential ability of MP MR imaging to identify clinically significant prostate cancer. MATERIALS AND METHODS: Institutional review board exemption was granted by the local research ethics committee for this retrospective study. Included were 64 men (mean age, 62 years [range, 40-76]; mean prostate-specific antigen, 8.2 ng/mL [8.2 μg/L] [range, 2.1-43 ng/mL]), 51 with biopsy-proved cancer and 13 suspected of having clinically significant cancer that was biopsy negative or without prior biopsy. MP MR imaging included T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging (1.5 T, pelvic phased-array coil). Three radiologists independently reviewed images and were blinded to results of biopsy. Two-by-two tables were derived by using sectors of analysis of four quadrants, two lobes, and one whole prostate. Primary target definition for clinically significant disease necessary to be present within a sector of analysis on TTPM for that sector to be deemed positive was set at Gleason score of 3+4 or more and/or cancer core length involvement of 4 mm or more. Sensitivity, negative predictive value, and negative likelihood ratio were calculated to determine ability of MP MR imaging to rule out cancer. Specificity, positive predictive value, positive likelihood ratio, accuracy (overall fraction correct), and area under receiver operating characteristic curves were also calculated. RESULTS: Twenty-eight percent (71 of 256) of sectors had clinically significant cancer by primary endpoint definition. For primary endpoint definition (≥ 4 mm and/or Gleason score ≥ 3+4), sensitivity, negative predictive value, and negative likelihood ratios were 58%-73%, 84%-89%, and 0.3-0.5, respectively. Specificity, positive predictive value, and positive likelihood ratios were 71%-84%, 49%-63%, and 2.-3.44, respectively. Area under the curve values were 0.73-0.84. CONCLUSION: Results of this study indicate that MP MR imaging has a high negative predictive value to rule out clinically significant prostate cancer and may potentially have clinical use in diagnostic pathways of men at risk
- …