6,905 research outputs found

    Structural Analysis and Performance-Based Validation of a Composite Wing Spar

    Get PDF
    Electric-motor powered aircraft possess the ability to operate with efficient energy delivery, but lack the operational range of internal combustion engine powered aircraft. This range limitation requires the use of high aspect ratio, thin-chord wings to minimize aerodynamic drag losses, which results in highly loaded composite spar structures. High aspect ratio wings are required to increase mission durations for a NASA-developed experimental multi-rotor electric powered aircraft denoted as the Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) or X-57. This paper examines the structural performance of the composite main wing spars to validate spar strength using ply-based laminate finite element methods. Geometric scaling of a main spar test-section was initially proposed for proof-testing but sacrificed stability. Ply-based structures modeling with local structural features was implemented as a risk-reduction methodology. Ply-based modeling was selected to augment the conventional building block approach to reduce risk, and leverage a performance-based approval processes encouraged in Federal Aviation Administration (FAA) design guidance. Therefore, ply-based laminate modeling of the full-scale main spar and forward spar shear-web attachments were subsequently undertaken to determine load path complexity with predicted flight loads. Ply-based modeling included stress concentrations and interlaminate behavior at interface locations that can be obscured in traditional finite element sizing models. Analysis of the wing spar laminate ply-based models compared with bearing test coupon performance was used to reduce future wing assembly proof-testing burden and facilitate performance-based flight hardware safety for the X-57 experimental aircraft

    Use of Remote Surface Based Tools for Visualizing Integrated Brain Imaging Data

    Get PDF
    We describe a surface-based approach to 3D visualization of integrated neuroimaging data. Our web-enabled software allows researchers to use these visualization tools over the Internet. We present examples of brain imaging studies where such remote surface-based visualization techniques have proven to be quite effective

    The Environmentalist and Radioactive Waste

    Get PDF

    The Environmentalist and Radioactive Waste

    Get PDF

    Brain Visualization in Java3D

    Get PDF
    BrainJ3D is a cross-platform Java/Java3D software toolkit for processing and visualizing brain imaging data, which 1) contains general purpose tools for reconstructing, mapping and visualizing integrated structural and functional images and 2) leverages Java's Remote Method Invocation to provide both a standalone and a client/server mode

    FEDERAL RELIEF FROM CIVIL JUDGMENTS

    Get PDF
    corecore