62,301 research outputs found
Classical Sphaleron Rate on Fine Lattices
We measure the sphaleron rate for hot, classical Yang-Mills theory on the
lattice, in order to study its dependence on lattice spacing. By using a
topological definition of Chern-Simons number and going to extremely fine
lattices (up to beta=32, or lattice spacing a = 1 / (8 g^2 T)) we demonstrate
nontrivial scaling. The topological susceptibility, converted to physical
units, falls with lattice spacing on fine lattices in a way which is consistent
with linear dependence on (the Arnold-Son-Yaffe scaling relation) and
strongly disfavors a nonzero continuum limit. We also explain some unusual
behavior of the rate in small volumes, reported by Ambjorn and Krasnitz.Comment: 14 pages, includes 5 figure
The density of organized vortices in a turbulent mixing layer
It is argued on the basis of exact solutions for uniform vortices in straining fields that vortices of finite cross-section in a row will disintegrate if the spacing is too small. The results are applied to the organized vortex structures observed in turbulent mixing layers. An explanation is provided for the disappearance of these structures as they move downstream and it is deduced that the ratio of average spacing to width should be about 3·5, the width being defined by the maximum slope of the mean velocity. It is shown in an appendix that walls have negligible effect
The rise of a body through a rotating fluid in a container of finite length
The drag on an axisymmetric body rising through a rotating fluid of small viscosity rotating about a vertical axis is calculated on the assumption that there is a Taylor column ahead of and behind the body, in which the geostrophic flow is determined by compatibility conditions on the Ekman boundary-layers on the body and the end surfaces. It is assumed that inertia effects may be neglected. Estimates are given of the conditions for which the theory should be valid
Airborne thermography of temperature patterns in sugar beet piles
An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas
Performance of 1.15-pressure-ratio fan stage at several rotor blade setting angles with reverse flow
A 51 cm diameter low pressure ratio fan stage was tested in reverse flow. Survey flow data were taken over the range of rotative speed from 50 percent to 100 percent design speed at several rotor blade setting angles through both flat and feather pitch. Normal flow design values of pressure ratio and weight flow were 1.15 and 29.9 kg/sec with a rotor tip speed of 243.8 m/sec. The maximum thrust in reverse flow was 52.5 percent of design thrust in normal flow
Aerodynamic Performance of Two Variable-Pitch Fan Stages
The NASA-Lewis Research Center is investigating a variety of fan stages applicable for short haul aircraft. These low-pressure-ratio low-speed fan stages may require variable-pitch rotor blades to provide optimum performance for the varied flight demands and for thrust reversal on landing. A number of the aerodynamic and structural compromises relating to the variable-pitch rotor blades are discussed. The aerodynamic performance of two variable-pitch fan stages operated at several rotor blade setting angles for both forward and reverse flow application are presented. Detailed radial surveys are presented for both forward and reverse flow
Sphaleron Transition Rate in Presence of Dynamical Fermions
We investigate the effect of dynamical fermions on the sphaleron transition
rate at finite temperature for the Abelian Higgs model in one spatial
dimension. The fermion degrees of freedom are included through bosonization.
Using a numerical simulation, we find that massless fermions do not change the
rate within the measurement accuracy. Surprisingly, the exponential dependence
of the sphaleron energy on the Yukawa coupling is not borne out by the
transition rate, which shows a very weak dependence on the fermion mass.Comment: 20 pages, 7 figures, LaTeX, psfi
HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution
The author has identified the following significant results. In early April 1978, heavy spring runoff from snowmelt caused significant flooding along a portion of the Big Sioux River Basin in southeastern South Dakota. The flooded area was visible from surrounding areas on a May 15 HCMM IR test image. On May 15, the flood waters had receded but an area of anomalous residual high soil moisture remained. The high soil moisture area was not visible on a HCMM day visible test image of the same scene, or on LANDSAT imagery. To evaluate the effect of water table depth on surface temperatures, thermal scanner data collected on September 5 and 6, 1978 at approximate HCMM overpass times at an altitude of 3650 m were analyzed. Apparent surface temperatures measured by the scanner included emittance contributions from soil surface and the land cover. Results indicated that the shallow water tables produced a damping of the amplitude of the diurnal surface temperature wave
- …