2,604 research outputs found

    Three stage potassium vapor turbine test

    Get PDF
    Three-stage potassium vapor turbine test to determine effects of vapor wetness on impingement damage of different rotor blade material

    Static and dynamic human flexor tendon-pulley interaction

    Full text link
    The aim of the study was to investigate the influence of a preceding flexion or extension movement on the static interaction of human finger flexor tendons and pulleys concerning flexion torque being generated. Six human fresh frozen cadaver long fingers were mounted in an isokinetic movement device for the proximal interphalangeal (PIP) joint. During flexion and extension movement both flexor tendons were equally loaded with 40N while the generated moment was depicted simultaneously at the fingertip. The movement was stopped at various positions of the proximal interphalangeal joint to record dynamic and static torque. The static torque was always greater after a preceding extension movement compared to a preceding flexion movement in the corresponding same position of the joint. This applied for the whole arc of movement of 0-105 degrees . The difference between static extension and flexion torque was maximal 11% in average at about 83 degrees of flexion. Static torque was always smaller than dynamic torque during extension movement and always greater than dynamic torque during flexion movement. The kind of preceding movement therefore showed an influence to the torque being generated in the proximal interphalangeal joint. The effect could be simulated on a mechanical finger device

    Edge local complementation for logical cluster states

    Full text link
    A method is presented for the implementation of edge local complementation in graph states, based on the application of two Hadamard operations and a single controlled-phase (CZ) gate. As an application, we demonstrate an efficient scheme to construct a one-dimensional logical cluster state based on the five-qubit quantum error-correcting code, using a sequence of edge local complementations. A single physical CZ operation, together with local operations, is sufficient to create a logical CZ operation between two logical qubits. The same construction can be used to generate any encoded graph state. This approach in concatenation may allow one to create a hierarchical quantum network for quantum information tasks.Comment: 15 pages, two figures, IOP styl

    Power train for three-stage potassium test turbine. Volume 1 - Final design

    Get PDF
    Final design for power train for three stage potassium test turbin

    ENOBIO - First tests of a dry electrophysiology electrode using carbon nanotubes

    Get PDF
    We describe the development and first tests of Enobio, a dry electrode sensor concept for biopotential applications. In the proposed electrodes, the tip of the electrode is covered with a forest of multi-walled CNTs that can be coated with Ag/AgCl to provide ionic-electronic transduction. The CNT brush-like structure is to penetrate the outer layers of the skin improving electrical contact as well as increae the contact surface area. In this paper, we report the results of the first tests of this concept -- immersion on saline solution and pig skin signal detection. These indicate performance on a par with state of the art research-oriented wet electrodes.Comment: Submitted and accepted at the 28th IEEE EMBS International Conference, New York City, August 31st-September 3rd, 2006. Figures updated with proper filtering and averagin

    Hadronic Atoms and Effective Interactions

    Get PDF
    We examine the problem of hadronic atom energy shifts using the technique of effective interactions and demonstrate equivalence with the conventional quantum mechanical approach.Comment: 22 page latex file with 2 figure

    Cartoon Computation: Quantum-like computing without quantum mechanics

    Get PDF
    We present a computational framework based on geometric structures. No quantum mechanics is involved, and yet the algorithms perform tasks analogous to quantum computation. Tensor products and entangled states are not needed -- they are replaced by sets of basic shapes. To test the formalism we solve in geometric terms the Deutsch-Jozsa problem, historically the first example that demonstrated the potential power of quantum computation. Each step of the algorithm has a clear geometric interpetation and allows for a cartoon representation.Comment: version accepted in J. Phys.A (Letter to the Editor
    corecore