29 research outputs found

    Provably-Secure (Chinese Government) SM2 and Simplified SM2 Key Exchange Protocols

    Get PDF
    We revisit the SM2 protocol, which is widely used in Chinese commercial applications and by Chinese government agencies. Although it is by now standard practice for protocol designers to provide security proofs in widely accepted security models in order to assure protocol implementers of their security properties, the SM2 protocol does not have a proof of security. In this paper, we prove the security of the SM2 protocol in the widely accepted indistinguishability-based Bellare-Rogaway model under the elliptic curve discrete logarithm problem (ECDLP) assumption. We also present a simplified and more efficient version of the SM2 protocol with an accompanying security proof

    Statistical power as a function of Cronbach alpha of instrument questionnaire items

    Get PDF
    Abstract Background In countless number of clinical trials, measurements of outcomes rely on instrument questionnaire items which however often suffer measurement error problems which in turn affect statistical power of study designs. The Cronbach alpha or coefficient alpha, here denoted by C α , can be used as a measure of internal consistency of parallel instrument items that are developed to measure a target unidimensional outcome construct. Scale score for the target construct is often represented by the sum of the item scores. However, power functions based on C α have been lacking for various study designs. Methods We formulate a statistical model for parallel items to derive power functions as a function of C α under several study designs. To this end, we assume fixed true score variance assumption as opposed to usual fixed total variance assumption. That assumption is critical and practically relevant to show that smaller measurement errors are inversely associated with higher inter-item correlations, and thus that greater C α is associated with greater statistical power. We compare the derived theoretical statistical power with empirical power obtained through Monte Carlo simulations for the following comparisons: one-sample comparison of pre- and post-treatment mean differences, two-sample comparison of pre-post mean differences between groups, and two-sample comparison of mean differences between groups. Results It is shown that C α is the same as a test-retest correlation of the scale scores of parallel items, which enables testing significance of C α . Closed-form power functions and samples size determination formulas are derived in terms of C α , for all of the aforementioned comparisons. Power functions are shown to be an increasing function of C α , regardless of comparison of interest. The derived power functions are well validated by simulation studies that show that the magnitudes of theoretical power are virtually identical to those of the empirical power. Conclusion Regardless of research designs or settings, in order to increase statistical power, development and use of instruments with greater C α , or equivalently with greater inter-item correlations, is crucial for trials that intend to use questionnaire items for measuring research outcomes. Discussion Further development of the power functions for binary or ordinal item scores and under more general item correlation strutures reflecting more real world situations would be a valuable future study

    DRDT: Distributed and Reliable Data Transmission with Cooperative Nodes for Lossy Wireless Sensor Networks

    Get PDF
    Recent studies have shown that in realistic wireless sensor network environments links are extremely unreliable. To recover from corrupted packets, most routing schemes with an assumption of ideal radio environments use a retransmission mechanism, which may cause unnecessary retransmissions. Therefore, guaranteeing energy-efficient reliable data transmission is a fundamental routing issue in wireless sensor networks. However, it is not encouraged to propose a new reliable routing scheme in the sense that every existing routing scheme cannot be replaced with the new one. This paper proposes a Distributed and Reliable Data Transmission (DRDT) scheme with a goal to efficiently guarantee reliable data transmission. In particular, this is based on a pluggable modular approach so that it can be extended to existing routing schemes. DRDT offers reliable data transmission using neighbor nodes, i.e., helper nodes. A helper node is selected among the neighbor nodes of the receiver node which overhear the data packet in a distributed manner. DRDT effectively reduces the number of retransmissions by delegating the retransmission task from the sender node to the helper node that has higher link quality to the receiver node when the data packet reception fails due to the low link quality between the sender and the receiver nodes. Comprehensive simulation results show that DRDT improves end-to-end transmission cost by up to about 45% and reduces its delay by about 40% compared to existing schemes

    MCBT: Multi-Hop Cluster Based Stable Backbone Trees for Data Collection and Dissemination in WSNs

    Get PDF
    We propose a stable backbone tree construction algorithm using multi-hop clusters for wireless sensor networks (WSNs). The hierarchical cluster structure has advantages in data fusion and aggregation. Energy consumption can be decreased by managing nodes with cluster heads. Backbone nodes, which are responsible for performing and managing multi-hop communication, can reduce the communication overhead such as control traffic and minimize the number of active nodes. Previous backbone construction algorithms, such as Hierarchical Cluster-based Data Dissemination (HCDD) and Multicluster, Mobile, Multimedia radio network (MMM), consume energy quickly. They are designed without regard to appropriate factors such as residual energy and degree (the number of connections or edges to other nodes) of a node for WSNs. Thus, the network is quickly disconnected or has to reconstruct a backbone. We propose a distributed algorithm to create a stable backbone by selecting the nodes with higher energy or degree as the cluster heads. This increases the overall network lifetime. Moreover, the proposed method balances energy consumption by distributing the traffic load among nodes around the cluster head. In the simulation, the proposed scheme outperforms previous clustering schemes in terms of the average and the standard deviation of residual energy or degree of backbone nodes, the average residual energy of backbone nodes after disseminating the sensed data, and the network lifetime

    Inverse Association between Fruit and Vegetable Intake and BMI even after Controlling for Demographic, Socioeconomic and Lifestyle Factors

    Get PDF
    To estimate fruit and vegetable (FV) intake levels of US adult population and evaluate the association between FV intake and BMI status after controlling for confounding demographic, socioeconomic and lifestyle factors. We also sought to identify moderating factors

    Energy and Distance-Aware Hopping Sensor Relocation for Wireless Sensor Networks

    No full text
    Recent advances in big data technology collecting and analyzing large amounts of valuable data have attracted a lot of attention. When the information in non-reachable areas is required, IoT wireless sensor network technologies have to be applied. Sensors fundamentally have energy limitations, and it is almost impossible to replace energy-depleted sensors that have been deployed in an inaccessible region. Therefore, moving healthy sensors into the sensing hole will recover the faulty sensor area. In rough surfaces, hopping sensors would be more appropriate than wheel-driven mobile sensors. Sensor relocation algorithms to recover sensing holes have been researched variously in the past. However, the majority of studies to date have been inadequate in reality, since they are nothing but theoretical studies which assume that all the topology in the network is known and then computes the shortest path based on the nonrealistic backing up knowledge—The topology information. In this paper, we first propose a distributed hopping sensor relocation protocol. The possibility of movement of the hopping sensor is also considered to recover sensing holes and is not limited to applying the shortest path strategy. Finally, a performance analysis using OMNeT++ has demonstrated the solidification of the excellence of the proposed protocol

    Proactive Handover Decision for UAVs with Deep Reinforcement Learning

    No full text
    The applications of Unmanned Aerial Vehicles (UAVs) are rapidly growing in domains such as surveillance, logistics, and entertainment and require continuous connectivity with cellular networks to ensure their seamless operations. However, handover policies in current cellular networks are primarily designed for ground users, and thus are not appropriate for UAVs due to frequent fluctuations of signal strength in the air. This paper presents a novel handover decision scheme deploying Deep Reinforcement Learning (DRL) to prevent unnecessary handovers while maintaining stable connectivity. The proposed DRL framework takes the UAV state as an input for a proximal policy optimization algorithm and develops a Received Signal Strength Indicator (RSSI) based on a reward function for the online learning of UAV handover decisions. The proposed scheme is evaluated in a 3D-emulated UAV mobility environment where it reduces up to 76 and 73% of unnecessary handovers compared to greedy and Q-learning-based UAV handover decision schemes, respectively. Furthermore, this scheme ensures reliable communication with the UAV by maintaining the RSSI above −75 dBm more than 80% of the time
    corecore