20 research outputs found

    alpha-Selective Glycosylation with beta-Glycosyl Sulfonium Ions Prepared via Intramolecular Alkylation

    Get PDF
    Contains fulltext : 203285.pdf (publisher's version ) (Open Access

    Sialic acid O -acetylation: From biosynthesis to roles in health and disease

    Get PDF
    Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural Oacetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification

    Chemoenzymatic synthesis of sialic acid derivatives using immobilized N-acetylneuraminate lyase in a continuous flow reactor

    No full text
    \u3cp\u3eThe synthesis of N-acetylneuraminic acid (Neu5Ac) derivatives is drawing more and more attention in glycobiology research because of the important role of sialic acids in e. g. cancer, bacterial, and healthy cells. Chemical preparation of these carbohydrates typically relies on multistep synthetic procedures leading to low overall yields. Herein we report a continuous flow process involving N-acetylneuraminate lyase (NAL) immobilized on Immobead 150P (Immobead-NAL) to prepare Neu5Ac derivatives. Batch experiments with Immobead-NAL showed equal activity as the native enzyme. Moreover, by using a fivefold excess of either N-acetyl-D-mannosamine (ManNAc) or pyruvate the conversion and isolated yield of Neu5Ac were significantly improved. To further increase the efficiency of the process, a flow setup was designed providing a chemoenzymatic entry into a series of N-functionalized Neu5Ac derivatives in conversions of 48–82%, and showing excellent stability over 1 week of continuous use. (Figure presented.).\u3c/p\u3

    Chemoenzymatic synthesis of sialic acid derivatives using immobilized N-acetylneuraminate lyase in a continuous flow reactor

    Get PDF
    The synthesis of N-acetylneuraminic acid (Neu5Ac) derivatives is drawing more and more attention in glycobiology research because of the important role of sialic acids in e. g. cancer, bacterial, and healthy cells. Chemical preparation of these carbohydrates typically relies on multistep synthetic procedures leading to low overall yields. Herein we report a continuous flow process involving N-acetylneuraminate lyase (NAL) immobilized on Immobead 150P (Immobead-NAL) to prepare Neu5Ac derivatives. Batch experiments with Immobead-NAL showed equal activity as the native enzyme. Moreover, by using a fivefold excess of either N-acetyl-D-mannosamine (ManNAc) or pyruvate the conversion and isolated yield of Neu5Ac were significantly improved. To further increase the efficiency of the process, a flow setup was designed providing a chemoenzymatic entry into a series of N-functionalized Neu5Ac derivatives in conversions of 48–82%, and showing excellent stability over 1 week of continuous use. (Figure presented.)

    Polysialic Acid Sustains the Hypoxia-Induced Migration and Undifferentiated State of Human Glioblastoma Cells

    No full text
    Gliomas are the most common primary malignant brain tumors. Glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4) is the most aggressive form of glioma and is characterized by extensive hypoxic areas that strongly correlate with tumor malignancy. Hypoxia promotes several processes, including stemness, migration, invasion, angiogenesis, and radio- and chemoresistance, that have direct impacts on treatment failure. Thus, there is still an increasing need to identify novel targets to limit GBM relapse. Polysialic acid (PSA) is a carbohydrate composed of a linear polymer of α2,8-linked sialic acids, primarily attached to the Neural Cell Adhesion Molecule (NCAM). It is considered an oncodevelopmental antigen that is re-expressed in various tumors. High levels of PSA-NCAM are associated with high-grade and poorly differentiated tumors. Here, we investigated the effect of PSA inhibition in GBM cells under low oxygen concentrations. Our main results highlight the way in which hypoxia stimulates polysialylation in U87-MG cells and in a GBM primary culture. By lowering PSA levels with the sialic acid analog, F-NANA, we also inhibited GBM cell migration and interfered with their differentiation influenced by the hypoxic microenvironment. Our findings suggest that PSA may represent a possible molecular target for the development of alternative pharmacological strategies to manage a devastating tumor like GBM

    Two Receptor Binding Strategy of SARS-CoV-2 Is Mediated by Both the N-Terminal and Receptor-Binding Spike Domain

    Get PDF
    It is not well understood why severe acute respiratory syndrome (SARS)-CoV-2 spreads much faster than other ÎČ-coronaviruses such as SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. In a previous publication, we predicted the binding of the N-terminal domain (NTD) of SARS-CoV-2 spike to sialic acids (SAs). Here, we experimentally validate this interaction and present simulations that reveal a second possible interaction between SAs and the spike protein via a binding site located in the receptor-binding domain (RBD). The predictions from molecular-dynamics simulations and the previously-published 2D-Zernike binding-site recognition approach were validated through flow-induced dispersion analysis (FIDA)─which reveals the capability of the SARS-CoV-2 spike to bind to SA-containing (glyco)lipid vesicles, and flow-cytometry measurements─which show that spike binding is strongly decreased upon inhibition of SA expression on the membranes of angiotensin converting enzyme-2 (ACE2)-expressing HEK cells. Our analyses reveal that the SA binding of the NTD and RBD strongly enhances the infection-inducing ACE2 binding. Altogether, our work provides in silico, in vitro, and cellular evidence that the SARS-CoV-2 virus utilizes a two-receptor (SA and ACE2) strategy. This allows the SARS-CoV-2 spike to use SA moieties on the cell membrane as a binding anchor, which increases the residence time of the virus on the cell surface and aids in the binding of the main receptor, ACE2, via 2D diffusion. </p

    Data underlying the research of Chemoenzymatic Synthesis of Sialic Acid Derivatives Using Immobilized N-Acetylneuraminate Lyase in a Continuous Flow Reactor

    No full text
    NMR research data related to a continuous flow process involving N‐acetylneuraminate lyase (NAL) immobilized on Immobead 150P to prepare Neu5Ac derivatives. Batch experiments with Immobead‐NAL showed equal activity as the native enzyme. By using a fivefold excess of either N‐acetyl‐D‐mannosamine (ManNAc) or pyruvate the conversion and isolated yield of Neu5Ac were significantly improved. To further increase the efficiency of the process, a flow setup was designed providing a chemoenzymatic entry into a series of N‐functionalized Neu5Ac derivatives in conversions of 48‐82%, and showing excellent stability over 1 week of continuous use

    Growth on Carbohydrates from Carbonaceous Meteorites Alters the Immunogenicity of Environment-Derived Bacterial Pathogens

    No full text
    The last decade has witnessed a renewed interest in space exploration. Public and private institutions are investing considerable effort toward the direct exploration of the Moon and Mars, as well as more distant bodies in the solar system. Both automated and human-crewed spacecraft are being considered in these efforts. As inevitable fellow travelers on the bodies of astronauts, spaceships, or equipment, terrestrial microorganisms will undoubtedly come into contact with extraterrestrial environments, despite stringent decontamination. These microorganisms could eventually adapt and grow in their new habitats, where they might potentially recolonize and lead to the infection of the human space travelers. In this article, we demonstrate that clinically relevant bacterial species found in the environment are able to grow in minimal media with sugar compounds identified in extraterrestrial carbon sources. As a surrogate model, we used carbohydrates previously isolated from carbonaceous meteorites. The bacteria underwent an adaptation process that caused structural modifications in the cell envelope that sparked changes in pathogenic potential, both in vitro and in vivo. Understanding the adaptation of microorganisms exposed to extraterrestrial environments, with subsequent changes in their immunogenicity and virulence, requires a comprehensive analysis of such scenarios to ensure the safety of major space expeditions in the decades to come
    corecore