6,483 research outputs found

    Highly electronegative metallic contacts to semiconductors using polymeric sulfur nitride

    Get PDF
    The Schottky barriers formed on nā€ZnS and nā€ZnSe by polymeric sulfur nitride have been compared to barriers formed by Au. Barrier energies as determined by photoresponse, currentā€voltage, and capacitanceā€voltage methods show that (SN)_x is approximately 1.0 eV higher than Au on nā€ZnS and 0.3ā€“0.4 eV higher than Au on nā€ZnSe. We believe that this is the first report of any metallic contact more electronegative than Au

    Instructional Case: J & S Bicycle Shop

    Get PDF
    This case is designed to develop and assess critical thinking and decision making skills in the presence of conflicting goals. Strategic/critical thinking and decision modeling are identified in the AICPAā€™s Core Competency Framework. The case setting is a choice among alternative inventory methods for a small business that is seeking a loan to finance expansion. Students are instructed to justify their choice of inventory method based upon information found in a list of documents. These documents contain both relevant and irrelevant information. Although the inventory calculations are simple, neither they nor the method chosen are the focus of the case. Students need to evaluate the evidence in the documents, and no single recommendation is uniquely correct. Studentsā€™ written responses are evaluated on how well the recommendations are developed and supported by the evidence

    Coral reef species assemblages are associated with ambient soundscapes

    Get PDF
    Author Posting. Ā© The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 533 (2015): 93-107, doi:10.3354/meps11382.Coral reefs provide a wide array of ecosystem services and harbor some of the highest levels of biodiversity on the planet, but many reefs are in decline worldwide. Tracking changes is necessary for effective resource management. Biological sounds have been suggested as a means to quantify ecosystem health and biodiversity, but this requires an understanding of natural bioacoustic variability and relationships to the taxa present. This investigation sought to characterize spatial and temporal variation in biological sound production within and among reefs that varied in their benthic and fish diversity. Multiple acoustic recorders were deployed for intensive 24-hour periods and longer term (~4-month) duty-cycled deployments on three reefs that varied in coral cover and fish density. Short-term results suggest that while there were statistically significant acoustic differences among recorders on a given reef, these differences were relatively small, indicating that a single sensor may be suitable for acoustic characterization of reefs. Analyses of sounds recorded over ~4 months indicated that the strength of diel trends in a low frequency fish band (100-1000 Hz) was correlated with coral cover and fish density but the strength of high-frequency snapping-shrimp (2-20 kHz) trends was not, suggesting that low-frequency recordings may be better indicators of the species assemblages present. Power spectra varied within reefs over the deployment periods, underscoring the need for long-duration recordings to characterize these trends. These findings suggest that, in spite of considerable spatial and temporal variability within reef soundscapes, diel trends in low-frequency sound production correlate with reef species assemblages.This research was funded by the Mitsubishi Corporation Foundation for the Americas and WHOIā€™s Access to the Sea program

    An oxygen-rich atmosphere or systemic fluoxetine extend the time to respiratory arrest in a rat model of obstructive apnea

    Get PDF
    Ā© 2019 Elsevier Inc. Audiogenic seizure-prone mice can be protected from seizure-associated death by exposure to an oxygen atmosphere or treatment with selective serotonergic reuptake inhibitors (SSRIs). We have shown previously in a rat model that epileptic seizure activity can spread through brainstem areas to cause sufficient laryngospasm for obstructive apnea and that the period of seizure-associated obstructive apnea can last long enough for respiratory arrest to occur. We hypothesized that both the oxygen-rich atmosphere and SSRIs function by prolonging the time to respiratory arrest, thus ensuring that seizure activity stops before the point of respiratory arrest to allow recovery of respiratory function. To test this hypothesis, we evaluated each preventative treatment in a rat model of controlled airway occlusion where the times to respiratory arrest can be measured. Adult male Sprague Dawley rats (median age = 66 days) were studied in the absence of any seizure activity. By directly studying responses to controlled airway occlusion, rather than airway occlusion secondary to seizure activity, we could isolate the effects of manipulations that might prolong respiratory arrest from the effects of those manipulations on seizure intensity. All group sizes were ā‰„ 8 animals per group. We found that both oxygen exposure and fluoxetine significantly increased the time to respiratory arrest by up to 65% (p \u3c .0001 for 5 min oxygen exposure; p = .031 for 25 mg/kg fluoxetine tested 60 min after injection) and, given that neither treatment has been shown to significantly alter seizure duration, these increases can account for the protection of either manipulation against death in sudden death models. Importantly, we found that 30 s of exposure to oxygen produced nearly the same protection as 5 min exposure suggesting that oxygen exposure could start after a seizure starts (p = .0012 for 30 s oxygen exposure). Experiments with 50% oxygen/50% air mixtures indicate that the oxygen concentration needs to be above about 60% to ensure that times to respiratory arrest will always be longer than a period of seizure-induced airway occlusion. Selective serotonin reuptake inhibitors, while instructive with regard to mechanism, require impractical dosing and may carry additional risk in the form of greater challenges for resuscitation. We conclude that oxygen exposure or SSRI treatment prevent seizure associated death by sufficiently prolonging the time to respiratory arrest so that respiratory function can recover after the seizure abates and eliminates the stimulus for seizure-induced apnea

    Life at the extreme:Plant-driven hotspots of soil nutrient cycling in the hyper-arid core of the Atacama Desert

    Get PDF
    The hyperarid core of the Atacama Desert represents one of the most intense environments on Earth, often being used as an analog for Mars regolith. The area is characterized by extremes in climate (e.g., temperature, humidity, UV irradiation) and edaphic factors (e.g., hyper-salinity, high pH, compaction, high perchlorates, and low moisture, phosphorus and organic matter). However, the halophytic C4 plant Distichlis spicata appears to be one of the few species on the planet that can thrive in this environment. Within this habitat it captures windblown sand leading to the formation of unique structures and the generation of above-ground phyllosphere soil. Using a combination of approaches (e.g., X-ray Computed Tomography, TXRF, Ī“13C/Ī“15N isotope profiling, microbial PLFAs, 14C turnover, phosphate sorption isotherms) we examined the factors regulating the biogeochemical cycling of nitrogen (N), phosphorus (P) and carbon (C) in both vegetated and unvegetated areas. Our results showed that D. spicata rhizomes with large aerenchyma were able to break through the highly cemented topsoil layer leading to root proliferation in the underlying soil. The presence of roots increased soil water content, P availability and induced a change in microbial community structure and promoted microbial growth and activity. In contrast, soil in the phyllosphere exhibited almost no biological activity. Organic C stocks and recent C4 plant derived input increased as follows: phyllosphere (1941 g C māˆ’2; 85% recent) &gt; soils under plants (575ā€“748 g C māˆ’2; 55ā€“60%) &gt; bare soils (491ā€“642 g C māˆ’2; 9ā€“17%). Due to the high levels of nitrate in soil (&gt;2 t haāˆ’1) and high rates of P sorption/precipitation, our data suggest that the microbial activity is both C and P, but not N limited. Root-mediated salt uptake combined with foliar excretion and dispersal of NaCl into the surrounding area indicated that D. spicata was responsible for actively removing ca. 55% of the salt from the rhizosphere. We also demonstrate that NH3 emissions may represent a major N loss pathway from these soil ecosystems during the processing of organic N. We attribute this to NH3 volatilization to the high pH of the soil and slow rates of nitrification. In conclusion, we demonstrate that the extremophile D. spicata physically, chemically and biologically reengineers the soil to create a highly bioactive hotspot within the climate-extreme of the Atacama Desert.</p

    The Phytogeography and Ecology of the Coastal Atacama and Peruvian Deserts

    Get PDF
    The Atacama and Peruvian Deserts form a continuous belt for more than 3500 km along the western escarpment of the Andes from northern Peru to northernmost Chile. These arid environments are due to a climatic regime dominated by the cool, north-flowing Humboldt (Peruvian) Current. Atmospheric conditions influenced by a stable, subtropical anticyclone result in a mild, uniform coastal climate nearly devoid of rain, but with the regular formation of thick stratus clouds below I 000 m during the winter months. Where coastal topography is low and flat, the clouds dissipate inward over broad areas with little biological impact. However, where isolated mountains or steep coastal slopes intercept the clouds, a fog-zone develops. This moisture allows the development of plant communities termed lomas formations. These floristic assemblages function as islands separated by hyperarid habitat devoid of plant life. Since growth is dependent upon available moisture, an understanding of climatic patterns is essential in efforts to interpret present-day plant distributions. Topography and substrate combine to influence patterns of moisture availability. The ecological requirements and tolerances of individual species ultimately determines community composition. Species endemism exceeds 40% and suggests that the lomas formations have evolved in isolation from their nearest geographic neighbors in the Andes. While the arid environment is continuous, there appears to be a significant barrier to dispersal between 18Ā° and 22Ā°S latitude in extreme northern Chile. Less than 7% of a total flora, estimated at nearly 1000 species, occur on both sides ofthis region. Viable hypotheses concerning the age and origins of these desert floras will require continued study of the ecology and biogeography of their component species

    Self-Potential Signals Generated by the Corrosion of Buried Metallic Objects with Application to Contaminant Plumes

    Get PDF
    Large-amplitude (\u3e100 mV) negative electric (self)-potential anomalies are often observed in the vicinity of buried metallic objects and ore bodies or over groundwater plumes associated with organic contaminants. To explain the physical and chemical mechanisms that generate such electrical signals, a controlled laboratory experiment was carried out involving two metallic cylinders buried with vertical and horizontal orientations and centered through and in the capillary fringe within a sandbox. The 2D and 3D self-potential (SP) data were collected at several time steps along with collocated pH and redox potential measurements. Large dipolar SP and redox potential anomalies developed in association with the progressive corrosion of the vertical pipe, although no anomalies were observed in the vicinity of the horizontal pipe. This discrepancy was due to the orientation of the pipes with the vertical pipe subjected to a significantly larger EH gradient. Accounting for the electrical conductivity distribution, the SP data were inverted to recover the source current density vector field using a deterministic least-squares 4D (time-lapse) finite-element modeling approach. These results were then used to retrieve the 3D distribution of the redox potential along the vertical metallic cylinder. The results of the inversion were found to be in excellent agreement with the measured distribution of the redox potential. This experiment indicated that passively recorded electrical signals can be used to nonintrusively monitor corrosion processes. In addition, vertical electrical potential profiles measured through a mature hydrocarbon contaminated site were consistent with the sandbox observations, lending support to the geobattery model over organic contaminant plumes

    Sensitive aerial hearing within a noisy nesting soundscape in a deep-diving seabird, the common murre Uria aalge

    Get PDF
    Diving seabirds face a combination of sound exposure in marine and terrestrial environments due to increasing human encroachment on coastal ecosystems. Yet the sound-sensitivity and sensory ecology of this threatened group of animals is largely unknown, complicating effective management and conservation. Here, we characterize aspects of the acoustic ecology of the common murre Uria aalge, one of the deepest diving alcid seabirds. Electrophysiological aerial hearing thresholds were measured for 12 wild, nesting individuals and compared to conspecific vocalizations and short-term aerial soundscape dynamics of their cliff nesting habitat. Auditory responses were measured from 0.5 to 6 kHz, with a lowest mean threshold of 30 dB at 2 kHz and generally sensitive hearing from 1 to 3.5 kHz. The short-term murre nesting soundscape contained biotic sounds from con- and heterospecific avifauna; broadband sounds levels of 56-69 dB re: 20 ĀµPa rms (0.1-10 kHz) were associated with both diel and tidal-cycle factors. Five murre vocalization types showed dominant spectral emphasis at or below the region of best hearing. Common murre hearing appears to be less sensitive than a related alcid, the Atlantic puffin Fratercula arctica, but more sensitive than other non-alcid diving birds described to date, suggesting that adaptations for deep diving have not caused a loss of the speciesā€™ hearing ability above water. Overall, frequencies of common murre hearing and vocalization overlap with many anthropogenic noise sources, indicating that the species is susceptible to disturbance from a range of noise types
    • ā€¦
    corecore