22 research outputs found

    Why Are Some Plant Genera More Invasive Than Others?

    Get PDF
    Determining how biological traits are related to the ability of groups of organisms to become economically damaging when established outside of their native ranges is a major goal of population biology, and important in the management of invasive species. Little is known about why some taxonomic groups are more likely to become pests than others among plants. We investigated traits that discriminate vascular plant genera, a level of taxonomic generality at which risk assessment and screening could be more effectively performed, according to the proportion of naturalized species which are pests. We focused on the United States and Canada, and, because our purpose is ultimately regulatory, considered species classified as weeds or noxious. Using contingency tables, we identified 11 genera of vascular plants that are disproportionately represented by invasive species. Results from boosted regression tree analyses show that these categories reflect biological differences. In summary, approximately 25% of variation in genus proportions of weeds or noxious species was explained by biological covariates. Key explanatory traits included genus means for wetland habitat affinity, chromosome number, and seed mass

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Characteristics of Adults in the Hepatitis B Research Network in North America Reflect Their Country of Origin and Hepatitis B Virus Genotype

    Get PDF
    Chronic hepatitis B virus (HBV) infection is an important cause of cirrhosis and hepatocellular carcinoma worldwide; populations that migrate to the US and Canada might be disproportionately affected. The Hepatitis B Research Network (HBRN) is a cooperative network of investigators from the United States and Canada, created to facilitate clinical, therapeutic, and translational research in adults and children with hepatitis B. We describe the structure of the network and baseline characteristics of adults with hepatitis B enrolled in the network
    corecore