3,023 research outputs found

    Current-Induced Resonant Motion of a Magnetic Vortex Core: Effect of Nonadiabatic Spin Torque

    Full text link
    The current-induced resonant excitation of a magnetic vortex core is investigated by means of analytical and micromagnetic calculations. We find that the radius and the phase shift of the resonant motion are not correctly described by the analytical equations because of the dynamic distortion of a vortex core. In contrast, the initial tilting angle of a vortex core is free from the distortion and determined by the nonadiabaticity of the spin torque. It is insensitive to experimentally uncontrollable current-induced in-plane Oersted field. We propose that a time-resolved imaging of the very initial trajectory of a core is essential to experimentally estimate the nonadiabaticity.Comment: 4 pages, 4 figure

    Methyl 9-diethyl­amino-2,2-bis­(4-meth­oxy­phen­yl)-2H-benzo[h]chromene-5-carboxyl­ate

    Get PDF
    In the title compound, C31H29NO5, the methyl carboxyl­ate and dimethyl­amino groups on the naphtho­pyran group are almost coplanar with the naphtho­pyran ring system [r.m.s. deviations = 0.08 (2) and 0.161 (2) Å, respectively]. The dihedral angle between the methyl carboxyl­ate and dimethyl­amino groups is 4.9 (1)°. The pyran ring has an envelope conformation with the quaternary C atom out of plane by 0.4739 (13) Å. The meth­oxy­phenyl substituent forms a dihedral angle of 16.6 (1)° with the plane of the benzene ring, while the other meth­oxy­phenyl group is almost coplanar, making a dihedral angle of 1.4 (1)°

    N,N-Diethyl-4-[9-meth­oxy-6-(4-methoxy­phen­yl)-5-methyl-2-phenyl-2H-benzo[h]chromen-2-yl]aniline

    Get PDF
    In the title compound, C38H37NO3, the pyran ring has an envelope conformation with the quaternary Cq atom as the flap atom. The dihedral angle formed between the meth­oxy­phenyl group and the naphthalene ring system is 67.32 (6)°. The ethyl­amino groups lie to the same side of the plane through the phenyl ring and form dihedral angles of 84.6 (3) and 75.8 (2)° with it

    Surgical anatomy of the uncinate process and transverse foramen determined by computer tomography

    Get PDF
    Study Design Computed tomography–based cohort study. Objective Although there are publications concerning the relationship between the vertebral artery and uncinate process, there is no practical guide detailing the dimensions of this region to use during decompression of the intervertebral foramen. The purpose of this study is to determine the anatomic parameters that can be used as a guide for thorough decompression of the intervertebral foramen. Methods Fifty-one patients with three-dimensional computed tomography scans of the cervical spine from 2003 to 2012 were included. On axial views, we measured the distance from the midline to the medial and lateral cortices of the pedicle bilaterally from C3 to C7. On coronal reconstructed views, we measured the minimum height of the uncinate process from the cranial cortex of the pedicle adjacent to the posterior cortex of vertebral body and the maximal height of the uncinate process from the cranial cortex of the pedicle at the midportion of the vertebral body bilaterally from C3 to C7. Results The mean distances from midline to the medial and lateral cortices of the pedicle were 10.1 ± 1.3 mm and 13.9 ± 1.5 mm, respectively. The mean minimum height of the uncinate process from the cranial cortex of the pedicle was 4.6 ± 1.6 mm and the mean maximal height was 6.1 ± 1.7 mm. Conclusions Our results suggest that in most cases, one can thoroughly decompress the intervertebral foramen by removing the uncinate out to 13 mm laterally from the midline and 4 mm above the pedicle without violating the transverse foramen

    Age-related changes in cervical sagittal range of motion and alignment

    Get PDF
    Study Design Retrospective cohort study. Objective To compare sagittal cervical range of motion (ROM) and alignment in young versus middle-aged adults. Methods One hundred four asymptomatic adults were selected randomly out of 791 subjects who underwent lateral cervical radiographs in neutral, flexion, and extension positions. They were divided into two groups: young (age 20 to 29, 52 people) and middle-aged adults (age 50 to 59, 52 people). We determined the ROMs of upper cervical (occipital–C2 angle), midcervical (C2–C7 angle), and cervicothoracic spine (cervicosternal angle). We compared the alignment differences of the two groups by calculating the distances between C2 and C7 plumb lines, and C2 central-offset distance. Results In neutral position, there was no significant difference between young and middle-aged adults. However, in flexion, C2–C7 angle, distance between C2–C7 plumb lines, and C2 central-offset distance decreased with age. In extension, C2–C7 angle and C2 central-offset distance decreased with age. During flexion and extension, midcervical ROM and the range of C2 central-offset distance decreased in the middle-aged group. However, there was no difference between the two age groups in the ROM of the upper cervical and the cervicothoracic regions during flexion and extension. Conclusion We found that, despite of the presence of age-related cervical alignment changes, the only difference between the two groups was in the sagittal ROM of the midcervical spine during flexion and extension. Only the ROM of the midcervical spine appears to change significantly, consistent with findings that these levels are most likely to develop both symptomatic and asymptomatic degenerative changes

    Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling

    Full text link
    Magnetization dynamics in a ferromagnet can induce a spin-dependent electric field through spin motive force. Spin current generated by the spin-dependent electric field can in turn modify the magnetization dynamics through spin-transfer torque. While this feedback effect is usually weak and thus ignored, we predict that in Rashba spin-orbit coupling systems with large Rashba parameter αR\alpha_{\rm R}, the coupling generates the spin-dependent electric field [\pm(\alpha_{\rm R}m_e/e\hbar) (\vhat{z}\times \partial \vec{m}/\partial t)], which can be large enough to modify the magnetization dynamics significantly. This effect should be relevant for device applications based on ultrathin magnetic layers with strong Rashba spin-orbit coupling.Comment: 4+ pages, 2 figure

    Radiographic comparison between cervical spine lateral and whole-spine lateral standing radiographs

    Get PDF
    Study Design Retrospective radiologic study. Objective The sagittal alignment of the cervical spine can be evaluated using either a lateral cervical radiograph or a whole-spine lateral view on which the cervical spine is included. To our knowledge, however, no report has compared the two. The purpose of this work is to identify the difference in radiographic parameters between the cervical spine lateral view and the whole-spine lateral view. Methods We retrospectively analyzed 59 adult patients suffering from neck pain with cervical spine lateral radiographs and whole-spine lateral radiographs from November 2007 to December 2011. The radiographs were measured using standard techniques to obtain the following parameters from the two different radiographs: occipital–C2 angle, C2–C7 angle, C7–sternal angle, sternal slope, T1 slope, C2 central offset distance, the distance between C2 and C7 plumb lines, C4 anteroposterior (AP) diameter, the ratio of C2 central off distance to C4 AP diameter, the ratio of plumb lines' distance to C4 AP diameter. Results We found that the occipital–C2 angle, sternal slope, and C4 AP diameter were similar, but the C2–C7 angle, C7–sternal angle, T1 slope, C2 central offset distance, distance between C2 and C7 plumb lines, ratio of C2 central off distance to C4 AP diameter, and ratio of plumb lines' distance to C4 AP diameter were different. However, the error of measurement was greater than the small angular and linear differences between the two views. Conclusions Most numerical values of the measured radiographic parameters appear to be different between the two views. However, the two views are comparable because the numerical differences were smaller than the errors of measurement

    Delayed surgical intervention in central cord syndrome with cervical stenosis

    Get PDF
    Study Design Review of the literature. Objective It is generally accepted that surgical treatment is necessary for central cord syndrome (CCS) with an underlying cervical stenosis. However, the surgical timing for decompression is controversial in spondylotic cervical CCS. The purpose of this study is to review the results of early and delayed surgery in patients with spondylotic cervical CCS. Methods MEDLINE was searched for English-language articles on CCS. There were 1,653 articles from 1940 to 2012 regarding CCS, 5 of which dealt with the timing of surgery for spondylotic cervical CCS. Results All five reports regarding the surgical timing of spondylotic cervical CCS were retrospective. Motor improvement, functional independence measures, and walking ability showed similar improvement in early and late surgery groups in the studies with follow-up longer than 1 year. However, greater improvement was seen in the early surgery group in the studies with follow-up shorter than 1 year. The complication rates did not show a difference between the early and late surgery groups. However, there are controversies regarding the length of intensive care unit stay or hospital stay for the two groups. Conclusions There was no difference in motor improvement, functional independence, walking ability, and complication rates between early and late surgery for spondylotic cervical CCS

    (7-Dimethylamino-1-hydroxy-3-naphthyl)(morpholino)methanone

    Get PDF
    In the title compound, C17H20N2O3, the morpholine ring is in a slightly distorted chair form. The crystal structure is stabilized by an inter­molecular O—H⋯O hydrogen bond between the H atom of the hydroxyl group and the O atom of a neighbouring carbonyl group. A weak inter­molecular C—H⋯π inter­action is also present

    Asymptomatic stenosis in the cervical and thoracic spines of patients with symptomatic lumbar stenosis

    Get PDF
    Study Design Retrospective study. Objective Studies on age-related degenerative changes causing concurrent stenoses in the cervical, thoracic, and lumbar spines (triple stenosis) are rare in the literature. Our objectives were to determine: (1) the incidence of asymptomatic radiologic cervical and thoracic stenosis in elderly patients with symptomatic lumbar stenosis, (2) the incidence of concurrent radiologic spinal stenosis in the cervical and thoracic spines, and (3) the radiologic features of cervical stenosis that might predict concurrent thoracic stenosis. Methods Whole-spine T2 sagittal magnetic resonance images of patients older than 80 and diagnosed with lumbar spinal stenosis between January 2003 and January 2012 were evaluated retrospectively. We included patients with asymptomatic spondylotic cervical and thoracic stenosis. We measured the anteroposterior diameters of the vertebral body, bony spinal canal, and spinal cord, along with the Pavlov ratio and anterior or posterior epidural stenosis at the level of the disk for each cervical and thoracic level. We compared the radiologic parameters between the subgroups of cervical stenosis with and without thoracic stenosis. Results Among the 460 patients with lumbar stenosis, 110 (23.9%) had concurrent radiologic cervical stenosis and 112 (24.3%) had concurrent radiologic thoracic stenosis. Fifty-six patients (12.1%) had combined radiologic cervical and thoracic stenosis in addition to their symptomatic lumbar stenosis (triple stenosis). Anterior epidural stenosis at C7–T1 was associated with a high prevalence of thoracic stenosis. Conclusions It appears that asymptomatic radiologic cervical and thoracic stenosis is common in elderly patients with symptomatic lumbar stenosis
    corecore