2,032 research outputs found

    Making MRI available for patients with cardiac implantable electronic devices: growing need and barriers to change

    Get PDF
    More than half of us will need a magnetic resonance imaging (MRI) scan in our lifetimes. MRI is an unmatched diagnostic test for an expanding range of indications including neurological and musculoskeletal disorders, cancer diagnosis, and treatment planning. Unfortunately, patients with cardiac pacemakers or defibrillators have historically been prevented from having MRI because of safety concerns. This results in delayed diagnoses, more invasive investigations, and increased cost. Major developments have addressed this-newer devices are designed to be safe in MRI machines under specific conditions, and older legacy devices can be scanned provided strict protocols are followed. This service however remains difficult to deliver sustainably worldwide: MRI provision remains grossly inadequate because patients are less likely to be referred, and face difficulties accessing services even when referred. Barriers still exist but are no longer technical. These include logistical hurdles (poor cardiology and radiology interaction at physician and technician levels), financial incentives (re-imbursement is either absent or fails to acknowledge the complexity), and education (physicians self-censor MRI requests). This article therefore highlights the recent changes in the clinical, logistical, and regulatory landscape. The aim of the article is to enable and encourage healthcare providers and local champions to build MRI services urgently for cardiac device patients, so that they may benefit from the same access to MRI as everyone else. KEY POINTS: • There is now considerable evidence that MRI can be provided safely to patients with cardiac implantable electronic devices (CIEDs). However, the volume of MRI scans delivered to patients with CIEDs is fifty times lower than that of the estimated need, and patients are approximately fifty times less likely to be referred. • Because scans for this patient group are frequently for cancer diagnosis and treatment planning, MRI services need to develop rapidly, but the barriers are no longer technical. • New services face logistical, educational, and financial hurdles which can be addressed effectively to establish a sustainable service at scale

    The influence of aortoseptal angulation on provocable left ventricular outflow tract obstruction in hypertrophic cardiomyopathy.

    Get PDF
    OBJECTIVES: Aortoseptal angulation (AoSA) can predict provocable left ventricular outflow tract obstruction (LVOTO) in patients with symptomatic hypertrophic cardiomyopathy (HCM). Lack of a standardised measurement technique in HCM without the need for complex three-dimensional (3D) imaging limits its usefulness in routine clinical practice. This study aimed to validate a simple measurement of AoSA using 2D echocardiography and cardiac MR (CMR) imaging as a predictor of LVOTO. METHODS: We retrospectively assessed 160 patients with non-obstructive HCM, referred for exercise stress echocardiography. AoSA was measured using resting 2D echocardiography in all patients, and CMR in 29. Twenty-five controls with normal echocardiograms were used for comparison. RESULTS: Patients with HCM had a reduced AoSA compared with controls (113°±12 vs 126°±6), p<0.0001. Sixty (38%) patients had provocable LVOTO, with smaller angles than non-obstructive patients (108°±12 vs 116°±12, p<0.0001). AoSA, degree of mitral valvular regurgitation and incomplete systolic anterior motion (SAM) were associated with peak left ventricular outflow tract gradient (r=0.508, p<0.0001). An angle ≤100° had 27% sensitivity, 91% specificity and 59% positive predictive value for predicting provocable LVOTO. When combined with SAM, specificity was 99% and positive predictive value 88%. Intraclass correlation coefficient of AoSA measured by two observers was 0.901 (p<0.0001). Bland-Altman analysis of echocardiographic AoSA showed good agreement with the CMR-derived angle. CONCLUSIONS: Measurement of AoSA using echocardiography in HCM is easy, reproducible and comparable to CMR. Patients with provocable LVOTO have reduced angles compared with non-obstructive patients. AoSA is highly specific for provocable LVOTO and should prompt further evaluation in symptomatic patients without resting obstruction

    Direct evidence for charge stripes in a layered cobalt oxide

    Get PDF
    Recent experiments indicate that static stripe-like charge order is generic to the hole-doped copper oxide superconductors and competes with superconductivity. Here we show that a similar type of charge order is present in La5/3 Sr1/3 CoO4 , an insulating analogue of the copper oxide superconductors containing cobalt in place of copper. The stripe phase we have detected is accompanied by short-range, quasi-one-dimensional, antiferromagnetic order, and provides a natural explanation for the distinctive hour- glass shape of the magnetic spectrum previously observed in neutron scattering mea- surements of La2−xSrx CoO4 and many hole-doped copper oxide superconductors. The results establish a solid empirical basis for theories of the hourglass spectrum built on short-range, quasi-static, stripe correlations

    Measurement of T1 Mapping in Patients With Cardiac Devices: Off-Resonance Error Extends Beyond Visual Artifact but Can Be Quantified and Corrected

    Get PDF
    Background: Measurement of myocardial T1 is increasingly incorporated into standard cardiovascular magnetic resonance (CMR) protocols, however accuracy may be reduced in patients with metallic cardiovascular implants. Measurement is feasible in segments free from visual artifact, but there may still be off-resonance induced error. Aim: To quantify off-resonance induced T1 error in patients with metallic cardiovascular implants, and validate a method for error correction for a conventional MOLLI pulse sequence. Methods: Twenty-four patients with cardiac implantable electronic devices (CIEDs: 46% permanent pacemakers, PPMs; 33% implantable loop recorders, ILRs; and 21% implantable cardioverter-defibrillators, ICDs); and 31 patients with aortic valve replacement (AVR) (45% metallic) were studied. Paired mid-myocardial short-axis MOLLI and single breath-hold off-resonance field maps were acquired at 1.5 T. T1 values were measured by AHA segment, and segments with visual artifact were excluded. T1 correction was applied using a published relationship between off-resonance and T1. The accuracy of the correction was assessed in 10 healthy volunteers by measuring T1 before and after external placement of an ICD generator next to the chest to generate off-resonance. Results: T1 values in healthy volunteers with an ICD were underestimated compared to without (967 ± 52 vs. 997 ± 26 ms respectively, p = 0.0001), but were similar after correction (p = 0.57, residual difference 2 ± 27 ms). Artifact was visible in 4 ± 12, 42 ± 31, and 53 ± 27% of AHA segments in patients with ILRs, PPMs, and ICDs, respectively. In segments without artifact, T1 was underestimated by 63 ms (interquartile range: 7–143) per patient. The greatest error for patients with ILRs, PPMs and ICDs were 79, 146, and 191 ms, respectively. The presence of an AVR did not generate T1 error. Conclusion: Even when there is no visual artifact, there is error in T1 in patients with CIEDs, but not AVRs. Off-resonance field map acquisition can detect error in measured T1, and a correction can be applied to quantify T1 MOLLI accurately

    Critical depinning force and vortex lattice order in disordered superconductors

    Full text link
    We simulate the ordering of vortices and its effects on the critical current in superconductors with varied vortex-vortex interaction strength and varied pinning strengths for a two-dimensional system. For strong pinning the vortex lattice is always disordered and the critical depinning force only weakly increases with decreasing vortex-vortex interactions. For weak pinning the vortex lattice is defect free until the vortex-vortex interactions have been reduced to a low value, when defects begin to appear with a simultaneous rapid increase in the critical depinning force. In each case the depinning force shows a maximum for non-interacting vortices. The relative height of the peak increases and the peak width decreases for decreasing pinning strength in excellent agreement with experimental trends associated with the peak effect. We show that scaling relations exist between the distance between defects in the vortex lattice and the critical depinning force.Comment: 5 pages, 6 figure

    Efficient Organic Photovoltaics Utilizing Nanoscale Heterojunctions in Sequentially Deposited Polymer/fullerene Bilayer

    Get PDF
    A highly efficient sequentially deposited bilayer (SD-bilayer) of polymer/fullerene organic photovoltaic (OPV) device is developed via the solution process. Herein, we resolve two essential problems regarding the construction of an efficient SD-bilayer OPV. First, the solution process fabrication of the SD-bilayer is resolved by incorporating an ordering agent (OA) to the polymer solution, which improves the ordering of the polymer chain and prevents the bottom-layer from dissolving into the top-layer solution. Second, a non-planar heterojunction with a large surface area is formed by the incorporation of a heterojunction agent (HA) to the top-layer solution. Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole- 4,7-diyl-2,5-thiophenediyl] (PCDTBT) is used for the bottom-layer and phenyl-C71-butyric-acid-methyl ester (PC70BM) is used for the top-layer. The SD-bilayer OPV produced utilizing both an OA and HA exhibits a power conversion efficiency (PCE) of 7.12% with a high internal quantum efficiency (IQE). We believe our bilayer system affords a new way of forming OPVs distinct from bulk heterojunction (BHJ) systems and offers a chance to reconsider the polymers that have thus far shown unsatisfactory performance in BHJ systemsope

    Repeatability of Cardiac Magnetic Resonance Radiomics: A Multi-Centre Multi-Vendor Test-Retest Study

    Get PDF
    Aims: To evaluate the repeatability of cardiac magnetic resonance (CMR) radiomics features on test-retest scanning using a multi-centre multi-vendor dataset with a varied case-mix. Methods and Results: The sample included 54 test-retest studies from the VOLUMES resource (thevolumesresource.com). Images were segmented according to a pre-defined protocol to select three regions of interest (ROI) in end-diastole and end-systole: right ventricle, left ventricle (LV), and LV myocardium. We extracted radiomics shape features from all three ROIs and, additionally, first-order and texture features from the LV myocardium. Overall, 280 features were derived per study. For each feature, we calculated intra-class correlation coefficient (ICC), within-subject coefficient of variation, and mean relative difference. We ranked robustness of features according to mean ICC stratified by feature category, ROI, and cardiac phase, demonstrating a wide range of repeatability. There were features with good and excellent repeatability (ICC ≥ 0.75) within all feature categories and ROIs. A high proportion of first-order and texture features had excellent repeatability (ICC ≥ 0.90), however, these categories also contained features with the poorest repeatability (ICC < 0.50). Conclusion: CMR radiomic features have a wide range of repeatability. This paper is intended as a reference for future researchers to guide selection of the most robust features for clinical CMR radiomics models. Further work in larger and richer datasets is needed to further define the technical performance and clinical utility of CMR radiomics
    corecore