19,716 research outputs found
Analog VLSI neural network integrated circuits
Two analog very large scale integration (VLSI) vector matrix multiplier integrated circuit chips were designed, fabricated, and partially tested. They can perform both vector-matrix and matrix-matrix multiplication operations at high speeds. The 32 by 32 vector-matrix multiplier chip and the 128 by 64 vector-matrix multiplier chip were designed to perform 300 million and 3 billion multiplications per second, respectively. An additional circuit that has been developed is a continuous-time adaptive learning circuit. The performance achieved thus far for this circuit is an adaptivity of 28 dB at 300 KHz and 11 dB at 15 MHz. This circuit has demonstrated greater than two orders of magnitude higher frequency of operation than any previous adaptive learning circuit
Ergodic property of Markovian semigroups on standard forms of von Neumann algebras
We give sufficient conditions for ergodicity of the Markovian semigroups
associated to Dirichlet forms on standard forms of von Neumann algebras
constructed by the method proposed in Refs. [Par1,Par2]. We apply our result to
show that the diffusion type Markovian semigroups for quantum spin systems are
ergodic in the region of high temperatures where the uniqueness of the
KMS-state holds.Comment: 25 page
PseudoSkyrmion Effects on Tunneling Conductivity in Coherent Bilayer Quantum Hall States at
We present a mechamism why interlayer tunneling conductivity in coherent
bilayer quantum Hall states at is anomalously large, but finite in the
recent experiment. According to the mechanism, pseudoSkyrmions causes the
finite conductivity, although there exists an expectation that dissipationless
tunneling current arises in the state. PseudoSkyrmions have an intrinsic
polarization field perpendicular to the layers, which causes the dissipation.
Using the mechanism we show that the large peak in the conductivity remains for
weak parallel magnetic field, but decay rapidly after its strength is beyond a
critical one, Tesla.Comment: 6 pages, no figure
Large X-ray Flares from LMC X-4: Discovery of Milli-hertz Quasi-periodic Oscillations and QPO-modulated Pulsations
We report the discovery of milli-hertz (mHz) quasi-periodic oscillations
(QPOs) and QPO-modulated pulsations during large X-ray flares from the
high-mass X-ray binary pulsar LMC X-4 using data from the Rossi X-Ray Timing
Explorer (RXTE). The lightcurves of flares show that, in addition to ~74 mHz
coherent pulsations, there exist two more time-varying temporal structures at
frequencies of ~0.65-1.35 and ~2-20 mHz. These relatively long-term structures
appear in the power density spectra as mHz QPOs and as well-developed sidebands
around the coherent pulse frequency as well, indicating that the amplitudes of
the coherent pulsation is modulated by those of the mHz QPOs. One interesting
feature is that, while the first flare shows symmetric sidebands around the
coherent pulse frequency, the second flare shows significant excess emission in
the lower-frequency sidebands due to the ~2-20 mHz QPOs. We discuss the origin
of the QPOs using a combination of the beat-frequency model and a modified
version of the Keplerian-frequency model. According to our discussion, it seems
to be possible to attribute the origin of the ~0.65-1.35 and ~2-20 mHz QPOs to
the beating between the rotational frequency of the neutron star and the
Keplerian frequency of large accreting clumps near the corotation radius and to
the orbital motion of clumps at Keplerian radii of 2-10 times 10^9 cm,
respectively.Comment: 12 pages, including 4 figures; accepted by ApJ Letter
Spin-Pseudospin Coherence and CP Skyrmions in Bilayer Quantum Hall Ferromagnets
We analyze bilayer quantum Hall ferromagnets, whose underlying symmetry group
is SU(4). Spin-pseudospin coherence develops spontaneously when the total
electron density is low enough. Quasiparticles are CP^3 skyrmions. One skyrmion
induces charge modulations on both of the two layers. At the filling factor one elementary excitation consists of a pair of skyrmions and its charge
is . Recent experimental data due to Sawada et al. [Phys. Rev. Lett. {\bf
80}, 4534 (1998)] support this conclusion.Comment: 4 pages including 2 figures (published version
Josephson surface plasmons in spatially confined cuprate superconductors
In this work, we generalize the theory of localized surface plasmons to the
case of high-Tc cuprate superconductors, spatially confined in the form of
small spherical particles. At variance from ordinary metals, cuprate
superconductors are characterized by a low-energy bulk excitation known as the
Josephson plasma wave (JPW), arising from interlayer tunneling of the
condensate along the c-axis. The effect of the JPW is revealed in a
characteristic spectrum of surface excitations, which we call Josephson surface
plasmons. Our results, which apply to any material with a strongly anisotropic
electromagnetic response, are worked out in detail for the case of multilayered
superconductors supporting both low-frequency (acoustic) and transverse-optical
JPW. Spatial confinement of the Josephson plasma waves may represent a new
degree of freedom to engineer their frequencies and to explore the link between
interlayer tunnelling and high-Tc superconductivity
Stiffness and energy losses in cylindrically symmetric superconductor levitating systems
Stiffness and hysteretic energy losses are calculated for a magnetically
levitating system composed of a type-II superconductor and a permanent magnet
when a small vibration is produced in the system. We consider a cylindrically
symmetric configuration with only vertical movements and calculate the current
profiles under the assumption of the critical state model. The calculations,
based on magnetic energy minimization, take into account the demagnetization
fields inside the superconductor and the actual shape of the applied field. The
dependence of stiffness and hysteretic energy losses upon the different
important parameters of the system such as the superconductor aspect ratio, the
relative size of the superconductor-permanent magnet, and the critical current
of the superconductor are all systematically studied. Finally, in view of the
results, we provide some trends on how a system such as the one studied here
could be designed in order to optimize both the stiffness and the hysteretic
losses.Comment: 8 pages; 8 figure
Interlayer Coherence in the and Bilayer Quantum Hall States
We have measured the Hall-plateau width and the activation energy of the
bilayer quantum Hall (BLQH) states at the Landau-level filling factor
and 2 by tilting the sample and simultaneously changing the electron density in
each quantum well. The phase transition between the commensurate and
incommensurate states are confirmed at and discovered at . In
particular, three different BLQH states are identified; the compound
state, the coherent commensurate state, and the coherent incommensurate state.Comment: 4 pages including 5 figure
- …