772 research outputs found

    Tunable resistivity of correlated VO2(A) and VO2(B) via tungsten doping

    Get PDF
    Applications of correlated vanadium dioxides VO2(A) and VO2(B) in electrical devices are limited due to the lack of effective methods for tuning their fundamental properties. We find that the resistivity of VO2(A) and VO2(B) is widely tunable by doping them with tungsten ions. When x < 0.1 in V1−xWxO2(A), the resistivity decreases drastically by four orders of magnitude with increasing x, while that of V1−xWxO2(B) shows the opposite behaviour. Using spectroscopic ellipsometry and X-ray photoemission spectroscopy, we propose that correlation effects are modulated by either chemical-strain-induced redistribution of V−V distances or electron-doping-induced band filling in V1−xWxO2(A), while electron scattering induced by disorder plays a more dominant role in V1−xWxO2(B). The tunable resistivity makes correlated VO2(A) and VO2(B) appealing for next-generation electronic devices. © 2020, The Author(s).1

    Acidic pH shock induces the expressions of a wide range of stress-response genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental signals usually enhance secondary metabolite production in <it>Streptomycetes </it>by initiating complex signal transduction system. It is known that different sigma factors respond to different types of stresses, respectively in <it>Streptomyces </it>strains, which have a number of unique signal transduction mechanisms depending on the types of environmental shock. In this study, we wanted to know how a pH shock would affect the expression of various sigma factors and shock-related proteins in <it>S. coelicolor </it>A3(2).</p> <p>Results</p> <p>According to the results of transcriptional and proteomic analyses, the major number of sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of <it>sigH </it>(heat shock), <it>sigR </it>(oxidative stress), <it>sigB </it>(osmotic shock), and <it>hrdD </it>that play a major role in the secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL2 were also observed to be upregulated by the pH shock, while their repressor of <it>hspR </it>was strongly downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and osmotic shock-related protein such as vesicle synthases were also upregulated in overall.</p> <p>Conclusion</p> <p>From these observations, an acidic pH shock was considered to be one of the strongest stresses to influence a wide range of sigma factors and shock-related proteins including general stress response proteins. The upregulation of the sigma factors and shock proteins already found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for actinorhodin production.</p

    Optical spectroscopic investigation on the coupling of electronic and magnetic structure in multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the effects of temperature and magnetic field on the electronic structure of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using optical spectroscopy. As the magnetic ordering of the system was disturbed, a systematic change in the electronic structure was commonly identified in this series. The optical absorption peak near 1.7 eV showed an unexpectedly large shift of more than 150 meV from 300 K to 15 K, accompanied by an anomaly of the shift at the Neel temperature. The magnetic field dependent measurement clearly revealed a sizable shift of the corresponding peak when a high magnetic field was applied. Our findings indicated strong coupling between the magnetic ordering and the electronic structure in the multiferroic hexagonal RMnO3 compounds.Comment: 16 pages including 4 figure

    Under-reporting of Energy Intake from 24-hour Dietary Recalls in the Korean National Health and Nutrition Examination Survey

    Get PDF
    AbstractObjectivesChronic degenerative diseases are closely related to daily eating habits, nutritional status, and, in particular, energy intake. In clarifying these relationships it is very important for dietary surveys to report accurate information about energy intake. This study attempted to identify the prevalence of the under-reporting of energy intake and its related characteristics based on the Korean National Health and Nutrition Examination Survey conducted in the years 2007–2009.MethodsThe present study analyzed dietary intake data from 15,133 adults aged ≥19 years using 24-hour dietary recalls. Basal metabolic rates were calculated from the age- and gender-specific equations of Schofield and under-reporting was defined as an energy intake <0.9, represented by the ratio of energy intake to estimated basal metabolic rate.ResultsUnder-reporters (URs) accounted for 14.4% of men and 23.0% of women and the under-reporting rate was higher in the age group 30–49 years for both men and women. The results from an analysis of the age-specific socioeconomic characteristics of participants classified as URs showed that under-reporting was high in women living alone and in women with only elementary school education or no education. The results from an analysis of the health-specific characteristics of URs showed that a large proportion of URs had poor self-rated health or were obese, or both, compared with non-URs. The proportion of participants who consumed less than the estimated average requirements for nutrients was significantly higher in URs compared with non-URs.ConclusionThe under-reporting of energy intake was associated with age, gender, education level, income level, household status (single-person or multi-person), self-rated health, physical activity, and obesity

    Electronic structures of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spectroscopic studies on the hexagonal multiferroic manganite system. We observed two optical transitions located near 1.7 eV and 2.3 eV, in addition to the predominant absorption above 5 eV. With the help of first-principles calculations, we attribute the low-lying optical absorption peaks to inter-site transitions from the oxygen states hybridized strongly with different Mn orbital symmetries to the Mn 3d3z2-r2 state. As the ionic radius of the rare earth ion increased, the lowest peak showed a systematic increase in its peak position. We explained this systematic change in terms of a flattening of the MnO5 triangular bipyramid

    Clinical outcomes of transjugular intrahepatic portosystemic shunt for portal hypertension: Korean multicenter real-practice data

    Get PDF
    Background/AimsThis retrospective study assessed the clinical outcome of a transjugular intrahepatic portosystemic shunt (TIPS) procedure for managing portal hypertension in Koreans with liver cirrhosis.MethodsBetween January 2003 and July 2013, 230 patients received a TIPS in 13 university-based hospitals.ResultsOf the 229 (99.6%) patients who successfully underwent TIPS placement, 142 received a TIPS for variceal bleeding, 84 for refractory ascites, and 3 for other indications. The follow-up period was 24.9±30.2 months (mean±SD), 74.7% of the stents were covered, and the primary patency rate at the 1-year follow-up was 78.7%. Hemorrhage occurred in 30 (21.1%) patients during follow-up; of these, 28 (93.3%) cases of rebleeding were associated with stent dysfunction. Fifty-four (23.6%) patients developed new hepatic encephalopathy, and most of these patients were successfully managed conservatively. The cumulative survival rates at 1, 6, 12, and 24 months were 87.5%, 75.0%, 66.8%, and 57.5%, respectively. A high Model for End-Stage Liver Disease (MELD) score was significantly associated with the risk of death within the first month after receiving a TIPS (P=0.018). Old age (P<0.001), indication for a TIPS (ascites vs. bleeding, P=0.005), low serum albumin (P<0.001), and high MELD score (P=0.006) were associated with overall mortality.ConclusionsA high MELD score was found to be significantly associated with early and overall mortality rate in TIPS patients. Determining the appropriate indication is warranted to improve survival in these patients

    Unconventional spin-phonon coupling via the Dzyaloshinskii???Moriya interaction

    Get PDF
    Spin-phonon coupling (SPC) plays a critical role in numerous intriguing phenomena of transition metal oxides (TMOs). In 3d and 4d TMOs, the coupling between spin and lattice degrees of freedom is known to originate from the exchange interaction. On the other hand, the origin of SPC in 5d TMOs remains to be elucidated. To address this issue, we measured the phonon spectra of the 5d pyrochlore iridate Y 2 Ir 2 O 7 using optical spectroscopy. Three infrared-active phonons soften below the N??el temperature of T N ??? 170 K, indicating the existence of strong SPC. Simulations using density functional theory showed that the coupling is closely related to the Ir???O???Ir bond angle. A tight-binding model analysis reveals that this SPC is mainly mediated by the Dzyaloshinskii???Moriya interaction rather than the usual exchange interaction. We suggest that such unconventional SPC may be realized in other 5d TMOs with non-collinear magnetic order

    Inhibitory Effect of Inflexinol on Nitric Oxide Generation and iNOS Expression via Inhibition of NF-κB Activation

    Get PDF
    Inflexinol, an ent-kaurane diterpenoid, was isolated from the leaves of Isodon excisus. Many diterpenoids isolated from the genus Isodon (Labiatae) have antitumor and antiinflammatory activities. We investigated the antiinflammatory effect of inflexinol in RAW 264.7 cells and astrocytes. As a result, we found that inflexinol (1, 5, 10 μM) suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as the production of nitric oxide (NO) in LPS-stimulated RAW 264.7 cells and astrocytes. Consistent with the inhibitory effect on iNOS and COX-2 expression, inflexinol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus. These results suggest that inflexinol inhibits iNOS and COX-2 expression through inhibition of NF-κB activation, thereby inhibits generation of inflammatory mediators in RAW 264.7 cells and astrocytes, and may be useful for treatment of inflammatory diseases
    corecore