14,403 research outputs found
Compaction and dilation rate dependence of stresses in gas-fluidized beds
A particle dynamics-based hybrid model, consisting of monodisperse spherical
solid particles and volume-averaged gas hydrodynamics, is used to study
traveling planar waves (one-dimensional traveling waves) of voids formed in
gas-fluidized beds of narrow cross sectional areas. Through ensemble-averaging
in a co-traveling frame, we compute solid phase continuum variables (local
volume fraction, average velocity, stress tensor, and granular temperature)
across the waves, and examine the relations among them. We probe the
consistency between such computationally obtained relations and constitutive
models in the kinetic theory for granular materials which are widely used in
the two-fluid modeling approach to fluidized beds. We demonstrate that solid
phase continuum variables exhibit appreciable ``path dependence'', which is not
captured by the commonly used kinetic theory-based models. We show that this
path dependence is associated with the large rates of dilation and compaction
that occur in the wave. We also examine the relations among solid phase
continuum variables in beds of cohesive particles, which yield the same path
dependence. Our results both for beds of cohesive and non-cohesive particles
suggest that path-dependent constitutive models need to be developed.Comment: accepted for publication in Physics of Fluids (Burnett-order effect
analysis added
Strain-controlled band engineering and self-doping in ultrathin LaNiO films
We report on a systematic study of the temperature-dependent Hall coefficient
and thermoelectric power in ultra-thin metallic LaNiO films that reveal a
strain-induced, self-doping carrier transition that is inaccessible in the
bulk. As the film strain varies from compressive to tensile at fixed
composition and stoichiometry, the transport coefficients evolve in a manner
strikingly similar to those of bulk hole-doped superconducting cuprates with
varying doping level. Density functional calculations reveal that the
strain-induced changes in the transport properties are due to self-doping in
the low-energy electronic band structure. The results imply that thin-film
epitaxy can serve as a new means to achieve hole-doping in other (negative)
charge-transfer gap transition metal oxides without resorting to chemical
substitution
Optical observations of NEA 162173 (1999 JU3) during the 2011-2012 apparition
Near-Earth asteroid 162173 (1999 JU3) is a potential target of two asteroid
sample return missions, not only because of its accessibility but also because
of the first C-type asteroid for exploration missions. The lightcurve-related
physical properties of this object were investigated during the 2011-2012
apparition. We aim to confirm the physical parameters useful for JAXA's
Hayabusa 2 mission, such as rotational period, absolute magnitude, and phase
function. Our data complement previous studies that did not cover low phase
angles. With optical imagers and 1-2 m class telescopes, we acquired the
photometric data at different phase angles. We independently derived the
rotational lightcurve and the phase curve of the asteroid. We have analyzed the
lightcurve of 162173 (1999 JU3), and derived a synodic rotational period of
7.625 +/- 0.003 h, the axis ratio a/b = 1.12. The absolute magnitude H_R =
18.69 +/- 0.07 mag and the phase slope of G = -0.09 +/- 0.03 were also obtained
based on the observations made during the 2011-2012 apparition.Comment: 4 pages, 3 figure
Strong Correlation to Weak Correlation Phase Transition in Bilayer Quantum Hall Systems
At small layer separations, the ground state of a nu=1 bilayer quantum Hall
system exhibits spontaneous interlayer phase coherence and has a
charged-excitation gap E_g. The evolution of this state with increasing layer
separation d has been a matter of controversy. In this letter we report on
small system exact diagonalization calculations which suggest that a single
phase transition, likely of first order, separates coherent incompressible (E_g
>0) states with strong interlayer correlations from incoherent compressible
states with weak interlayer correlations. We find a dependence of the phase
boundary on d and interlayer tunneling amplitude that is in very good agreement
with recent experiments.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. Let
Electronic structures of layered perovskite Sr2MO4 (M=Ru, Rh, and Ir)
We investigated the electronic structures of the two-dimensional layered
perovskite Sr\textit{M}O (\textit{M}=4\textit{d} Ru, 4\textit{d}
Rh, and 5\textit{d} Ir) using optical spectroscopy and polarization-dependent O
1\textit{s} x-ray absorption spectroscopy. While the ground states of the
series of compounds are rather different, their optical conductivity spectra
exhibit similar interband transitions, indicative of the
common electronic structures of the 4\textit{d} and 5\textit{d} layered oxides.
The energy splittings between the two orbitals, ,
and , are about 2 eV, which is much larger
than those in the pseudocubic and 3\textit{d} layered perovskite oxides. The
electronic properties of the Sr\textit{M}O compounds are discussed
in terms of the crystal structure and the extended character of the 4\textit{d}
and 5\textit{d} orbitals
Epitaxial Stabilization of Ultrathin Films of Rare-Earth Nickelates
We report on the synthesis of ultrathin films of highly distorted EuNiO3
(ENO) grown by interrupted pulse laser epitaxy on YAlO3 (YAO) substrates.
Through mapping the phase space of nickelate thin film epitaxy, the optimal
growth temperatures were found to scale linearly with the Goldschmidt tolerance
factor. Considering the gibbs energy of the expanding film, this empirical
trend is discussed in terms of epitaxial stabilization and the escalation of
the lattice energy due to lattice distortions and decreasing symmetry. These
findings are fundamental to other complex oxide perovskites, and provide a
route to the synthesis of other perovskite structures in ultrathin-film form.Comment: 7 pages, 3 figure
Non-commutative field theory approach to two-dimensional vortex liquid system
We investigate the non-commutative (NC) field theory approach to the vortex
liquid system restricted to the lowest Landau level (LLL) approximation. NC
field theory effectively takes care of the phase space reduction of the LLL
physics in a -product form and introduces a new gauge invariant form of
a quartic potential of the order parameter in the Ginzburg-Landau (GL) free
energy. This new quartic interaction coupling term has a non-trivial
equivalence relation with that obtained by Br\'ezin, Nelson and Thiaville in
the usual GL framework. The consequence of the equivalence is discussed.Comment: Add vortex lattice formation, more references, and one autho
- …