366 research outputs found

    Lattice thermal conductivity of disordered NiPd and NiPt alloys

    Full text link
    Numerical calculations of lattice thermal conductivity are reported for the binary alloys NiPd and NiPt. The present work is a continuation of an earlier paper by us [PRB, 72, 214207 (2005)]which had developed a theoretical framework for the calculation of configuration-averaged lattice thermal conductivity and thermal diffusivity in disordered alloys. The formulation was based on the augmented space theorem combined with a scattering diagram technique. In this paper we shall show dependence of the lattice thermal conductivity on a series of variables like phonon frequency, temperature and alloy composition. The temperature dependence of Îş(T)\kappa(T) and its realtion to the measured thermal conductivity is discussed. The concentration dependence of Îş\kappa appears to justify the notion of a minimum thermal conductivity as discussed by Kittel, Slack and others. We also study the frequency and composition dependence of the thermal diffusivity averaged over modes. A numerical estimate of this quantity gives an idea about the location of mobility edge and the fraction of states in the frequency spectrum which is delocalized.Comment: 23 pages, 18 figure

    An augmented space recursion study of the electronic structure of rough epitaxial overlayers

    Full text link
    In this communication we propose the use of the Augmented Space Recursion as an ideal methodology for the study of electronic and magnetic structures of rough surfaces, interfaces and overlayers. The method can take into account roughness, short-ranged clustering effects, surface dilatation and interdiffusion. We illustrate our method by an application of Fe overlayer on Ag (100) surface.Comment: 22 pages, Latex, 6 postscript figure

    Phonons in random alloys: the itinerant coherent-potential approximation

    Full text link
    We present the itinerant coherent-potential approximation(ICPA), an analytic, translationally invariant and tractable form of augmented-space-based, multiple-scattering theory in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni_{55} Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation(CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex

    Spectral statistics near the quantum percolation threshold

    Full text link
    The statistical properties of spectra of a three-dimensional quantum bond percolation system is studied in the vicinity of the metal insulator transition. In order to avoid the influence of small clusters, only regions of the spectra in which the density of states is rather smooth are analyzed. Using finite size scaling hypothesis, the critical quantum probability for bond occupation is found to be pq=0.33±.01p_q=0.33\pm.01 while the critical exponent for the divergence of the localization length is estimated as ν=1.35±.10\nu=1.35\pm.10. This later figure is consistent with the one found within the universality class of the standard Anderson model.Comment: REVTeX, 4 pages, 5 figures, all uuencoded, accepted for publication in PRB (Rapid Communication

    Influence of s-d interfacial scattering on the magnetoresistance of magnetic tunnel junctions

    Full text link
    We propose the two-band s-d model to describe theoretically a diffuse regime of the spin-dependent electron transport in magnetic tunnel junctions (MTJ's) of the form F/O/F where F's are 3d transition metal ferromagnetic layers and O is the insulating spacer. We aim to explain the strong interface sensitivity of the tunneling properties of MTJ's and investigate the influence of electron scattering at the nonideal interfaces on the degradation of the TMR magnitude. The generalized Kubo formalism and the Green's functions method were used to calculate the conductance of the system. The vertex corrections to the conductivity were found with the use of "ladder" approximation combined with the coherent-potential approximation (CPA) that allowed to consider the case of strong electron scattering. It is shown that the Ward identity is satisfied in the framework of this approximation that provides the necessary condition for a conservation of a tunneling current. Based on the known results of ab-initio calculations of the TMR for ballistic junctions, we assume that exchange split quasi-free s-like electrons with the density of states being greater for the majority spin sub-band give the main contribution to the TMR effect. We show that, due to interfacial inter-band scattering, the TMR can be substantially reduced even down to zero value. This is related to the fact that delocalized quasi-free electrons can scatter into the strongly localized d sub-band with the density of states at the Fermi energy being larger for minority spins compared to majority spins. It is also shown that spin-flip electron scattering on the surface magnons within the interface leads to a further decrease of the TMR at finite temperature.Comment: REVTeX4, 20 pages, 9 figures, 1 table, submitted to Phys.Rev.B; In Version 2 the text is substantially improved, the main results and conclusions left the sam

    Magnetic properties of X-Pt (X=Fe,Co,Ni) alloy systems

    Full text link
    We have studied the electronic and magnetic properties of Fe-Pt, Co-Pt and Ni-Pt alloy systems in ordered and disordered phases. The influence of various exchange-correlation functionals on values of equilibrium lattice parameters and magnetic moments in ordered Fe-Pt, Co-Pt and Ni-Pt alloys have been studied using linearized muffin-tin orbital method. The electronic structure calculations for the disordered alloys have been carried out using augmented space recursion technique in the framework of tight binding linearized muffin-tin orbital method. The effect of short range order has also been studied in the disordered phase of these systems. The results show good agreements with available experimental values.Comment: 21 pages, 4 eps figures, accepted for publication in Journal of Physics Condensed Matte

    Validation of CLIF-C ACLF score to define a threshold for futility of intensive care support for patients with acute-on-chronic liver failure

    Get PDF
    BACKGROUND: Acute-on-chronic liver failure (ACLF) is a severe complication of cirrhosis and is defined by organ failure and high rates of short-term mortality. Patients with ACLF are managed with multiorgan support in the intensive care unit (ICU). Currently, it is unclear when this supportive care becomes futile, particularly in patients who are not candidates for liver transplant. The aim of this study was to determine whether the currently available prognostic scores can identify patients with ACLF in whom prolonged ICU care is likely to be futile despite maximal treatment efforts. METHODS: Data of 202 consecutive patients with ACLF admitted to the ICU at the Royal Free Hospital London between 2005 and 2012 were retrospectively analyzed. Prognostic scores for chronic liver diseases, such as Child-Pugh, Model for End-Stage Liver Disease (MELD), European Foundation for the study of chronic liver failure (CLIF-C) organ failure (OF), and CLIF-C ACLF, were calculated 48 hours after ICU admission and correlated with patient outcome after 28 days. RESULTS: The CLIF-C ACLF score, compared with all other scores, most accurately predicted 28-day mortality, with an area under the receiver operator characteristic of 0.8 (CLIF-C OF, 0.75; MELD, 0.68; Child-Pugh, 0.66). A CLIF-C ACLF score cutoff ≥ 70 identified patients with a 100% mortality within 28 days. These patients had elevated inflammatory parameters representing a systemic inflammatory response, most often renal failure, compared with patients below this cutoff. CONCLUSION: Patients with ACLF and high CLIF-C ACLF score (≥ 70) after 48 hours of intensive care may reach a threshold of futility for further ongoing intensive support. The best treatment options in this scenario remain to be determined but may include palliative care

    Multiparametric MR characterisation of a high-fat, high-cholesterol diet rodent model of liver disease

    Get PDF
    There is a growing interest in the development of new animal models of non-alcoholic fatty liver disease. In this study, we use T1, proton density fat fraction (PDFF) and R2* mapping to characterise hepatic parenchymal tissue and the evolution of MR properties over time in a high-fat, high-cholesterol diet model of fatty liver disease

    The role of RIPK1 mediated cell death in acute on chronic liver failure

    Get PDF
    Acute-on-chronic liver failure (ACLF) is characterized predominantly by non-apoptotic forms of hepatocyte cell death. Necroptosis is a form of programmed lytic cell death in which receptor interacting protein kinase (RIPK) 1, RIPK3 and phosphorylated mixed lineage kinase domain-like (pMLKL) are key components. This study was performed to determine the role of RIPK1 mediated cell death in ACLF. RIPK3 plasma levels and hepatic expression of RIPK1, RIPK3, and pMLKL were measured in healthy volunteers, stable patients with cirrhosis, and in hospitalized cirrhotic patients with acutely decompensated cirrhosis, with and without ACLF (AD). The role of necroptosis in ACLF was studied in two animal models of ACLF using inhibitors of RIPK1, necrostatin-1 (NEC-1) and SML2100 (RIPA56). Plasma RIPK3 levels predicted the risk of 28- and 90-day mortality (AUROC, 0.653 (95%CI 0.530–0.776), 0.696 (95%CI 0.593–0.799)] and also the progression of patients from no ACLF to ACLF [0.744 (95%CI 0.593–0.895)] and the results were validated in a 2nd patient cohort. This pattern was replicated in a rodent model of ACLF that was induced by administration of lipopolysaccharide (LPS) to bile-duct ligated rats and carbon tetrachloride-induced fibrosis mice administered galactosamine (CCL4/GalN). Suppression of caspase-8 activity in ACLF rodent model was observed suggesting a switch from caspase-dependent cell death to necroptosis. NEC-1 treatment prior to administration of LPS significantly reduced the severity of ACLF manifested by reduced liver, kidney, and brain injury mirrored by reduced hepatic and renal cell death. Similar hepato-protective effects were observed with RIPA56 in a murine model of ACLF induced by CCL4/GalN. These data demonstrate for the first time the importance of RIPK1 mediated cell death in human and rodent ACLF. Inhibition of RIPK1 is a potential novel therapeutic approach to prevent progression of susceptible patients from no ACLF to ACLF

    Disease prevention not decolonization – a model for fecal microbiota transplantation in patients colonized with multidrug-resistant organisms

    Get PDF
    Fecal microbiota transplantation (FMT) yields variable intestinal decolonization results for multidrug-resistant organisms (MDROs). This study showed significant reductions in antibiotic duration, bacteremia and length of stay in 20 patients colonized/ infected with MDRO receiving FMT (compared to pre-FMT history, and a matched group not receiving FMT), despite modest decolonization rates
    • …
    corecore