331 research outputs found

    Adaptation of Bordetella pertussis to vaccination: a cause for its reemergence?

    Get PDF
    In the Netherlands, as in many other western countries, pertussis vaccines have been used extensively for more than 40 years. Therefore, it is conceivable that vaccine-induced immunity has affected the evolution of Bordetella pertussis. Consistent with this notion, pertussis has reemerged in the Netherlands, despite high vaccination coverage. Further, a notable change in the population structure of B. pertussis was observed in the Netherlands subsequent to the introduction of vaccination in the 1950s. Finally, we observed antigenic divergence between clinical isolates and vaccine strains, in particular with respect to the surface-associated proteins pertactin and pertussis toxin. Adaptation may have allowed B. pertussis to remain endemic despite widespread vaccination and may have contributed to the reemergence of pertussis in the Netherlands

    Reemergence of pertussis in the highly vaccinated population of the Netherlands: observations on surveillance data.

    Get PDF
    We analyzed pertussis reporting, death, hospitalization, and serodiagnostic data from 1976 to 1998 to help explain the cause of the 1996 pertussis outbreak in the Netherlands. The unexpected outbreak was detected by an increase in pertussis reporting and by other surveillance methods. In 1996, according to reporting and serologic data, the increase in pertussis incidence among (mostly unvaccinated) children less than 1 year of age was similar to the increase in hospital admissions. Among older (mostly vaccinated) persons, the increase in hospital admissions was relatively small. The increase in pertussis incidence was higher among vaccinated than among unvaccinated persons of all ages. This resulted in lower estimates of vaccine effectiveness. The proportion of pertussis infections resulting in recognizable symptoms may have increased among vaccinated persons because of a mismatch of the vaccine strain and circulating Bordetella pertussis strains. The small immunogenicity profile of the Dutch vaccine may have resulted in greater vulnerability to antigenic changes in B. pertussis

    Pertussis in The Netherlands: an outbreak despite high levels of immunization with whole-cell vaccine.

    Get PDF
    In 1996, a sudden increase in pertussis incidence was reported in the Netherlands (2.1 per 100,000 in 1995, 18 per 100,000 in 1996). Although not all potential surveillance artifacts could be excluded, it is highly probable that the data reflect a true outbreak. However, the cause of this increase has not yet been determined. Further research is directed to the severity of disease and a possible mismatch between the vaccine and the circulating Bordetella strains

    Improved discrimination of melanotic schwannoma from melanocytic lesions by combined morphological and GNAQ mutational analysis

    Get PDF
    The histological differential diagnosis between melanotic schwannoma, primary leptomeningeal melanocytic lesions and cellular blue nevus can be challenging. Correct diagnosis of melanotic schwannoma is important to select patients who need clinical evaluation for possible association with Carney complex. Recently, we described the presence of activating codon 209 mutations in the GNAQ gene in primary leptomeningeal melanocytic lesions. Identical codon 209 mutations have been described in blue nevi. The aims of the present study were to (1) perform a histological review of a series of lesions (initially) diagnosed as melanotic schwannoma and analyze them for GNAQ mutations, and (2) test the diagnostic value of GNAQ mutational analysis in the differential diagnosis with leptomeningeal melanocytic lesions. We retrieved 25 cases that were initially diagnosed as melanotic schwannoma. All cases were reviewed using established criteria and analyzed for GNAQ codon 209 mutations. After review, nine cases were classified as melanotic schwannoma. GNAQ mutations were absent in these nine cases. The remaining cases were reclassified as conventional schwannoma (n = 9), melanocytoma (n = 4), blue nevus (n = 1) and lesions that could not be classified with certainty as melanotic schwannoma or melanocytoma (n = 2). GNAQ codon 209 mutations were present in 3/4 melanocytomas and the blue nevus. Including results from our previous study in leptomeningeal melanocytic lesions, GNAQ mutations were highly specific (100%) for leptomeningeal melanocytic lesions compared to melanotic schwannoma (sensitivity 43%). We conclude that a detailed analysis of morphology combined with GNAQ mutational analysis can aid in the differential diagnosis of melanotic schwannoma with leptomeningeal melanocytic lesions

    Multicentre phase II study of gemcitabine and cisplatin in malignant pleural mesothelioma

    Get PDF
    Malignant pleural mesothelioma is a notoriously chemoresistant tumour. However, a recent single institution study showed an impressive activity of gemcitabine and cisplatin. Our aim is to investigate the efficacy and toxicity of a gemcitabine and cisplatin combination in selected and chemo-naive patients with histologically proven malignant pleural mesothelioma. Method: Gemcitabine 1250 mg m−2 was administered on day 1 and day 8 and cisplatin 80 mg m−2 was administered on day 1 in a 3-week cycle with a maximum of six cycles. Response and toxicity evaluations were performed according to WHO and NCIC-CTC criteria. Pathology and radiology were centrally reviewed. Results show that in 25 evaluable patients, four PR were observed (ORR 16%, 95% CI 1–31%). Responses of seven patients were unevaluable. No unexpected toxicity occurred. Time to progression was 6 months (5–7 months) with a median survival from registration of 9.6 months (95% CI 8–12 months). In conclusion this trial excludes with 90% power a response rate of greater than 30% in patients with malignant pleural mesothelioma using a combination of gemcitabine and cisplatin at the proposed dose and schedule

    Cellular senescence in naevi and immortalisation in melanoma: a role for p16?

    Get PDF
    Cellular senescence, the irreversible proliferative arrest seen in somatic cells after a limited number of divisions, is considered a crucial barrier to cancer, but direct evidence for this in vivo was lacking until recently. The best-known form of human cell senescence is attributed to telomere shortening and a DNA-damage response through p53 and p21. There is also a more rapid form of senescence, dependent on the p16-retinoblastoma pathway. p16 (CDKN2A) is a known melanoma susceptibility gene. Here, we use retrovirally mediated gene transfer to confirm that the normal form of senescence in cultured human melanocytes involves p16, since disruption of the p16/retinoblastoma pathway is required as well as telomerase activation for immortalisation. Expression (immunostaining) patterns of senescence mediators and markers in melanocytic lesions provide strong evidence that cell senescence occurs in benign melanocytic naevi (moles) in vivo and does not involve p53 or p21 upregulation, although p16 is widely expressed. In comparison, dysplastic naevi and early (radial growth-phase, RGP) melanomas show less p16 and some p53 and p21 immunostaining. All RGP melanomas expressed p21, suggesting areas of p53-mediated senescence, while most areas of advanced (vertical growth-phase) melanomas lacked both p16 and p21, implying escape from both forms of senescence (immortalisation). Moreover, nuclear p16 but not p21 expression can be induced in human melanocytes by oncogenic BRAF, as found in around 80% of naevi. We conclude that cell senescence can form a barrier to melanoma development. This also provides a potential explanation of why p16 is a melanoma suppressor gene

    PTTG1 Attenuates Drug-Induced Cellular Senescence

    Get PDF
    As PTTG1 (pituitary tumor transforming gene) abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1−/−) exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1−/− senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001). p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1−/− cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1−/− cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1−/− HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1−/− tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes

    Integration of Gene Dosage and Gene Expression in Non-Small Cell Lung Cancer, Identification of HSP90 as Potential Target

    Get PDF
    BACKGROUND: Lung cancer causes approximately 1.2 million deaths per year worldwide, and non-small cell lung cancer (NSCLC) represents 85% of all lung cancers. Understanding the molecular events in non-small cell lung cancer (NSCLC) is essential to improve early diagnosis and treatment for this disease. METHODOLOGY AND PRINCIPAL FINDINGS: In an attempt to identify novel NSCLC related genes, we performed a genome-wide screening of chromosomal copy number changes affecting gene expression using microarray based comparative genomic hybridization and gene expression arrays on 32 radically resected tumor samples from stage I and II NSCLC patients. An integrative analysis tool was applied to determine whether chromosomal copy number affects gene expression. We identified a deletion on 14q32.2-33 as a common alteration in NSCLC (44%), which significantly influenced gene expression for HSP90, residing on 14q32. This deletion was correlated with better overall survival (P = 0.008), survival was also longer in patients whose tumors had low expression levels of HSP90. We extended the analysis to three independent validation sets of NSCLC patients, and confirmed low HSP90 expression to be related with longer overall survival (P = 0.003, P = 0.07 and P = 0.04). Furthermore, in vitro treatment with an HSP90 inhibitor had potent antiproliferative activity in NSCLC cell lines. CONCLUSIONS: We suggest that targeting HSP90 will have clinical impact for NSCLC patients

    Lifestyle management of hypertension: International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension

    Get PDF
    Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools

    Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial spot of tomato and pepper is caused by four <it>Xanthomonas </it>species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, <it>Xanthomonas euvesicatoria </it>(<it>Xcv</it>) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10.</p> <p>Results</p> <p>We sequenced the genomes of <it>X. vesicatoria </it>(<it>Xv</it>) strain 1111 (ATCC 35937), <it>X. perforans </it>(<it>Xp</it>) strain 91-118 and <it>X. gardneri </it>(<it>Xg</it>) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced <it>Xcv </it>strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from <it>Xg </it>strain 101 and <it>Xv </it>strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in <it>Xcv</it>. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity.</p> <p>Conclusions</p> <p>Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.</p
    corecore