49 research outputs found

    Pulsed Corona Discharge for Oxidation of Gaseous Elemental Mercury

    Get PDF
    Positive pulsed corona discharge has been applied for the oxidation of gaseous elemental mercury (Hg0) from a simulated flue gas. The oxidation of Hg0 to HgO and HgCl2 can significantly enhance the mercury removal from flue gas. At a gas condition of O2 (10%), H2O (3%), and N2 (balance), Hg0 oxidation efficiency of 84% was achieved at an input energy density of 45 J/l. The presence of NO, however, hinders Hg0 oxidation due to the preferential reaction of NO with O and O3. On the contrary, SO2 shows little effect on Hg0 oxidation due to its preferential reaction with OH. It has been also observed that the HCl in gas stream can be dissociated to Cl and Cl2 and can induce additional Hg0 oxidation to HgCl2

    Injection scheme with deflecting cavity for a fourth-generation storage ring

    Get PDF
    We suggest a new on-axis injection scheme that uses a transverse deflecting rf cavity to kick the incoming beam into an already populated bucket but with a timing offset from the synchronous phase. In a new on-axis injection scheme, two deflecting rf cavities are required: one upstream of the injection point that crabs the stored beam and the other downstream of the injection point that both uncrabs the stored beam and kicks the incoming beam onto the axis of the orbital plane. We present a theoretical analysis and numerical simulations of the stored beam and injected beam with the new injection scheme.11Ysciescopu

    Axion Haloscope Using an 18 T High Temperature Superconducting Magnet

    Full text link
    We report details on the axion dark matter search experiment that uses the innovative technologies of a High-Temperature Superconducting (HTS) magnet and a Josephson Parametric Converter (JPC). An 18 T HTS solenoid magnet is developed for this experiment. The JPC is used as the first stage amplifier to achieve a near quantum-limited low-noise condition. The first dark matter axion search was performed with the 18 T axion haloscope. The scan frequency range is from 4.7789 GHz to 4.8094 GHz (30.5 MHz range). No significant signal consistent with Galactic dark matter axion is observed. Our results set the best limit of the axion-photon-photon coupling (gaγγg_{a\gamma\gamma}) in the axion mass range of 19.764 to 19.890 μ\mueV. Using the Bayesian method, the upper bounds of gaγγg_{a\gamma\gamma} are set at 0.98×gaγγKSVZ\times|g_{a\gamma\gamma}^{\text{KSVZ}}| (1.11×gaγγKSVZ\times|g_{a\gamma\gamma}^{\text{KSVZ}}|) in the mass ranges of 19.764 to 19.771 μ\mueV (19.863 to 19.890 μ\mueV), and at 1.76 ×gaγγKSVZ\times|g_{a\gamma\gamma}^{\text{KSVZ}}| in the mass ranges of 19.772 to 19.863 μ\mueV with 90\% confidence level, respectively. We report design, construction, operation, and data analysis of the 18 T axion haloscope experiment.Comment: PRD published versio

    Design of a compact gantry for carbon-ion beam therapy

    No full text
    This paper presents the design of a compact gantry that uses superconducting bending magnets (BMs), for use in carbon-ion beam therapy. The size of the gantry is comparable to those of existing gantries that are used for proton-beam therapy. The designed gantry provides point-to-parallel scanning over an area of 20 cm x 20 cm at the isocenter, and has rotationally-invariant optics, which are enabled by quadrupole and dipole magnets together with a 90-degree combined-function magnet with 18.6-cm bore radius. A 90-degree BM accommodates large scanning angles; it also provides equal focusing in horizontal and vertical planes, and zero-integrated nonlinear fields to minimize beam distortion at the isocenter. Three-dimensional field analysis of the magnet, and particle-tracking simulation validate the beam optics of the gantry and point-to-parallel scanning. Taylor map and Lie map are shown to be useful in analysis of magnetic fields and in optimizing the coil windings.11Yscopu

    Improvement of Injection Efficiency of Carbon Ions for Medical Synchrotron

    No full text
    This paper describes a systematic study for optimization of the multi-turn injection effciency of carbon-ions for medical synchrotron. This is accomplished by optimizing tunes, bump-magnet parameters, and the number of turns required for injection. For selecting optimal tunes, a frequency map is investigated which reveals various resonances limiting the injection efficiency. The injection bump and the number of turns are optimized by tracking numerous particles up to a few thousand turns after injection. Space-charge effects are considered and found to be non-negligible at the chosen injection energy, 7 MeV/u.11Nsciescopuskc

    The Effect of Reinforcing Plate on the Stiffness of Elastomeric Bearing for FPSO

    No full text
    The marine elastomeric bearing consists of an elastomer and several reinforcing inserted plates. Unlike land bearings that are to absorb high-frequency vibration during earthquakes, offshore elastomeric bearings are to support topside-module weight while efficiently absorbing wave-induced hull motions. The bearing is to receive three loads: compression, shear, and bending, and providing sufficient stiffness to resist the loads by inserting an adequate number of reinforcing plates is a major design issue for marine bearings. The stiffness of elastomeric bearings is largely influenced by the ratio of height to the area of the bearing and the number of laminated reinforcing plates. In this study, for the given size of the elastomeric bearing, the effect of the number of reinforcing plates on its compression, shear, and bending stiffness is investigated by using ANSYS Mechanical APDL, a commercial structural FE (finite element) analysis program. First, full analysis is done for the compression, shear, and bending stiffness with increasing respective displacements and the number of reinforcing plates from 0 to 8. The numerical results are partly validated by authors’ experimental results. Based on the numerical results, several empirical formulas are suggested for the variation of the three stiffnesses as a function of the number of reinforcing plates. Next, the design of the elastomer bearing for a representative FPSO (Floating Production Storage and Offloading) operated in the North Sea is conducted according to the required load and displacement conditions. Then, the adequate number of reinforcing plates for the case is determined and the results are shown to satisfy all the required safety factors for various required loading conditions
    corecore