341 research outputs found

    Atom probe tomography of a Cu-doped TiNiSn thermoelectric material : nanoscale structure and optimization of analysis conditions

    Get PDF
    Funding: The Oxford Atom Probe facility is funded by EPSRC (EP/M022803/1) and the Glasgow plasma focused ion beam system was funded by EPSRC grant EP/P001483/1. Thermoelectric materials were developed under joint EPSRC grants EP/N017218/1 and EP/N01717X/1.Cu-doping and crystallographic site occupations within the half-Heusler (HH) TiNiSn, a promising thermoelectric material, have been examined by atom probe tomography. In particular, this investigation aims to better understand the influence of atom probe analysis conditions on the measured chemical composition. Under a voltage-pulsing mode, atomic planes are clearly resolved and suggest an arrangement of elements in-line with the expected HH (F-43m space group) crystal structure. The Cu dopant is also distributed uniformly throughout the bulk material. For operation under laser-pulsed modes, the returned composition is highly dependent on the selected laser energy, with high energies resulting in the measurement of excessively high absolute Ti counts at the expense of Sn and in particular Ni. High laser energies also appear to be correlated with the detection of a high fraction of partial hits, indicating nonideal evaporation behavior. The possible mechanisms for these trends are discussed, along with suggestions for optimal analysis conditions for these and similar thermoelectric materials.PostprintPeer reviewe

    Magnons in real materials from density-functional theory

    Full text link
    We present an implementation of the adiabatic spin-wave dynamics of Niu and Kleinman. This technique allows to decouple the spin and charge excitations of a many-electron system using a generalization of the adiabatic approximation. The only input for the spin-wave equations of motion are the energies and Berry curvatures of many-electron states describing frozen spin spirals. The latter are computed using a newly developed technique based on constrained density-functional theory, within the local spin density approximation and the pseudo-potential plane-wave method. Calculations for iron show an excellent agreement with experiments.Comment: 1 LaTeX file and 1 postscript figur

    Four-wave-mixing microscopy reveals non-colocalisation between gold nanoparticles and fluorophore conjugates inside cells

    Get PDF
    Gold nanoparticles have been researched for many biomedical applications in diagnostics, theranostics, and as drug delivery systems. When conjugated to fluorophores, their interaction with biological cells can be studied in situ and real time using fluorescence microscopy. However, an important question that has remained elusive to answer is whether the fluorophore is a faithful reporter of the nanoparticle location. Here, our recently developed four-wave-mixing optical microscopy is applied to image individual gold nanoparticles and in turn investigate their co-localisation with fluorophores inside cells. Nanoparticles from 10 nm to 40 nm diameter were conjugated to fluorescently-labeled transferrin, for internalisation via clathrin-mediated endocytosis, or to non-targeting fluorescently-labelled antibodies. Human (HeLa) and murine (3T3-L1) cells were imaged at different time points after incubation with these conjugates. Our technique identified that, in most cases, fluorescence originated from unbound fluorophores rather than from fluorophores attached to nanoparticles. Fluorescence detection was also severely limited by photobleaching, quenching and autofluorescence background. Notably, correlative extinction/fluorescence microscopy of individual particles on a glass surface indicated that commercial constructs contain large amounts of unbound fluorophores. These findings highlight the potential problems of data interpretation when reliance is solely placed on the detection of fluorescence within the cell, and are of significant importance in the context of correlative light electron microscopy

    Microstructural evolution and transmutation in tungsten under ion and neutron irradiation

    Get PDF
    This study aims to compare the effects of neutron and self-ion irradiation on the mechanical properties and microstructural evolution in W. Neutron irradiation at the HFR reactor to 1.67 dpa at 800 °C resulted in the formation of large Re and Os rich clusters and voids. The post-irradiation composition was measured using APT and verfified against FISPACT modelling. The measured Re and Os concentration was used to create alloys with equivalent concentrations of Re and Os. These alloys were exposed to self-ion irradiation to a peak dose of 1.7 dpa at 800 °C. APT showed that self-ion irradiation leads to the formation of small Os clusters, wheras under neutron irradiation large Re/Os clusters form. Voids are formed by both ion and neutron irradiation, but the voids formed by neutron irradiation are larger. By comparing the behaviour of W-1.4Re and W-1.4Re-0.1Os, suppression of Re cluster formation was observed. Irradiation hardening was measured using nanoindentation and was found to be 2.7 GPa, after neutron irradiation and 1.6 GPa and 0.6 GPa for the self-ion irradiated W-1.4Re and W-1.4Re-0.1Os. The higher hardening is attributed to the barrier strength of large voids and Re/Os clusters that are observed after neutron irradiation

    An Analysis of Resting-State Functional Transcranial Doppler Recordings from Middle Cerebral Arteries

    Get PDF
    Functional transcrannial Doppler (fTCD) is used for monitoring the hemodynamics characteristics of major cerebral arteries. Its resting-state characteristics are known only when considering the maximal velocity corresponding to the highest Doppler shift (so called the envelope signals). Significantly more information about the resting-state fTCD can be gained when considering the raw cerebral blood flow velocity (CBFV) recordings. In this paper, we considered simultaneously acquired envelope and raw CBFV signals. Specifically, we collected bilateral CBFV recordings from left and right middle cerebral arteries using 20 healthy subjects (10 females). The data collection lasted for 15 minutes. The subjects were asked to remain awake, stay silent, and try to remain thought-free during the data collection. Time, frequency and time-frequency features were extracted from both the raw and the envelope CBFV signals. The effects of age, sex and body-mass index were examined on the extracted features. The results showed that the raw CBFV signals had a higher frequency content, and its temporal structures were almost uncorrelated. The information-theoretic features showed that the raw recordings from left and right middle cerebral arteries had higher content of mutual information than the envelope signals. Age and body-mass index did not have statistically significant effects on the extracted features. Sex-based differences were observed in all three domains and for both, the envelope signals and the raw CBFV signals. These findings indicate that the raw CBFV signals provide valuable information about the cerebral blood flow which can be utilized in further validation of fTCD as a clinical tool. © 2013 Sejdić et al

    High frequency oscillations of Newton's constant induced by inflation

    Get PDF
    We examine the possibility that an epoch of inflationary expansion induces high-frequency oscillations of Newton's constant, GG. The effect occurs because inflation can shift the expectation value of a non-minimally coupled, Brans-Dicke-like field away from the minimum of its effective potential. At some time after inflation ends, the field begins to oscillate, resulting in periodic variations in GG. We find conditions for which the oscillation energy would be sufficient to close the universe, consistent with all known constraints from cosmology and local tests of general relativity.Comment: 30 pages, Penn Preprint UPR-0628T, Wash. U. Preprint WUGRAV 94-10 Four figures available by ftp (read comment at head of file

    Reduced Cognitive Assessment Scores Among Individuals With Magnetic Resonance Imaging-Detected Vascular Brain Injury

    Get PDF
    Background and Purpose- Little is known about the association between covert vascular brain injury and cognitive impairment in middle-aged populations. We investigated if scores on a cognitive screen were lower in individuals with higher cardiovascular risk, and those with covert vascular brain injury. Methods- Seven thousand five hundred forty-seven adults, aged 35 to 69 years, free of cardiovascular disease underwent a cognitive assessment using the Digital Symbol Substitution test and Montreal Cognitive Assessment, and magnetic resonance imaging (MRI) to detect covert vascular brain injury (high white matter hyperintensities, lacunar, and nonlacunar brain infarctions). Cardiovascular risk factors were quantified using the INTERHEART (A Global Study of Risk Factors for Acute Myocardial Infarction) risk score. Multivariable mixed models tested for independent determinants of reduced cognitive scores. The population attributable risk of risk factors and MRI vascular brain injury on low cognitive scores was calculated. Results- The mean age of participants was 58 (SD, 9) years; 55% were women. Montreal Cognitive Assessment and Digital Symbol Substitution test scores decreased significantly with increasing age

    Cardiovascular risk scoring and magnetic resonance imaging detected subclinical cerebrovascular disease

    Get PDF
    AIMS: Cardiovascular risk factors are used for risk stratification in primary prevention. We sought to determine if simple cardiac risk scores are associated with magnetic resonance imaging (MRI)-detected subclinical cerebrovascular disease including carotid wall volume (CWV), carotid intraplaque haemorrhage (IPH), and silent brain infarction (SBI). METHODS AND RESULTS: A total of 7594 adults with no history of cardiovascular disease (CVD) underwent risk factor assessment and a non-contrast enhanced MRI of the carotid arteries and brain using a standardized protocol in a population-based cohort recruited between 2014 and 2018. The non-lab-based INTERHEART risk score (IHRS) was calculated in all participants; the Framingham Risk Score was calculated in a subset who provided blood samples (n = 3889). The association between these risk scores and MRI measures of CWV, carotid IPH, and SBI was determined. The mean age of the cohort was 58 (8.9) years, 55% were women. Each 5-point increase (∼1 SD) in the IHRS was associated with a 9 mm3 increase in CWV, adjusted for sex (P \u3c 0.0001), a 23% increase in IPH [95% confidence interval (CI) 9-38%], and a 32% (95% CI 20-45%) increase in SBI. These associations were consistent for lacunar and non-lacunar brain infarction. The Framingham Risk Score was also significantly associated with CWV, IPH, and SBI. CWV was additive and independent to the risk scores in its association with IPH and SBI. CONCLUSION: Simple cardiovascular risk scores are significantly associated with the presence of MRI-detected subclinical cerebrovascular disease, including CWV, IPH, and SBI in an adult population without known clinical CVD
    corecore