7 research outputs found

    Genetic Variations among Fleabane (<i>Conyza bonariensis</i> (L.) Cronquist) Populations in Jordan and Their Susceptibility Levels to Contact Herbicides

    No full text
    A field demonstration and pot experiments were implemented to assess the effect of paraquat, oxadiazon, and oxyfluorfen herbicides in controlling selected populations of fleabane Conyza bonariensis (L.), grown in the central valley of Jordan. Conyza mature seeds were collected from six investigated sites (five from Jordan valley named P1, P2, P3, P4, P5, and one from the University of Jordan Campus named P6). Only populations proved to be C. bonariensis via ITS assessment were involved in the glasshouse experiments at the University of Jordan in 2017 and 2019. Results showed that recommended or two-fold higher rates (2.5 and 5 kg ha−1) of paraquat failed to affect weed plants in a date palm orchard located at Tal-al-Ramel in the Central Jordan Valley. Paraquat, oxyfluorfen, and oxadiazon (2.5, 3.3, and 5 kg ha−1, respectively), failed to control plants of the same weed population grown in pot experiments. Treated plants at Tal-al-Ramel grew similarly to untreated control, mostly due to different genetic backgrounds. The other C. bonariensis populations (University Research Station, al-Twal, and University Campus) were effectively controlled with all herbicides. The application of recommended or 10-fold higher rates of herbicides failed to control or slightly injured the resistant population. Seed DNA analysis of the ITS region showed genetic differences among the investigated populations. It indicated that four populations are C. bonariensis (P1, P3, P4, and P6). At the same time, two are C. canadensis (a closely related species) collected from the University Research Station (P2) and al-Twal sites (P5), and also that the population of C. bonariensis in the date palm orchard was genetically distinct from the other C. bonariensis populations. It is concluded that C. bonariensis population in the Tal-al-Ramel site developed resistance to paraquat, oxadiazon, and oxyfluorfen herbicides. Thus, novel alternative practices in controlling the resistant weed population are necessary to prevent its possible spread to other regions in the country and obstruct the development of new herbicide-resistance weed populations

    Effect of Mycorrhiza Fungi, Preceding Crops, Mineral and Bio Fertilizers on Maize Intercropping with Cowpea

    No full text
    One filed experiment was carried out to study the effect of Arbuscular Mycorrhiza fungi and three preceding winter crops, i.e., Meskawy cultivar of Egyptian clover berseem (Trifolium alexandrinum L.), Careem cultivar of sugar beet (Beta vulgaris) and Sakha 94 cultivar of wheat (Triticum aestivum) and five fertilizer combinations as treatments of NPK mineral and bio fertilizer which included 100% NPK (T1), 75% NPK + arbuscular mycorrhiza fungi (AMFs) (T2), 50% NPK + arbuscular mycorrhiza fungi (AMFs) (T3), 75% NPK + mycrobein (T4) and 50% NPK + mycrobein (T5) on maize intercropping with cowpea. The results showed that berseem was the best as a preceding crop and gave the highest values of maize and cowpea, followed by sugar beet as a preceding crop. While wheat recorded the lowest values. Fertilizer treatments had significant effect on all maize and cowpea traits. The treatment 75% NPK + arbuscular mycorrhiza fungi (AMFs) (T2) gave the highest values. Meanwhile, no significant differences were found between fertilizer treatments T1 (100% NPK mineral) and T2 (75% NPK + arbuscular mycorrhiza fungi (AMFs)) combination on all studied characters of maize. The interaction had a significant effect on most studied characters of maize and cowpea in the two growing seasons. The cultivation of the two components of intercropping after berseem with T2 fertilizer recorded the highest values. Mixing the third cut of cowpea with maize straw increased significantly the quality and digestibility of forge in both seasons. Planting after berseem and T2 fertilizer gave the highest values as yield advantageous for land equivalent ratio (LER) and relative crowding coefficient (K) which recorded 1.51 and 1.6 and 9.45 and 15.35 in the first and second seasons, respectively. The increases in net return were 3955.67 and 5062.50 L.E., which equates to a percentage of 34.25 and 44.71%, by cultivation intercropping component after berseem and T2 fertilizer treatment (75% NPK + arbuscular mycorrhiza fungi (AMFs)) compared with maize pure stand in first and second seasons, respectively

    Physiological and Biochemical Changes in Vegetable and Field Crops under Drought, Salinity and Weeds Stresses: Control Strategies and Management

    No full text
    Weeds are one of the most damaging biotic stresses in crop production, and drought and salinity are considered the most serious abiotic stresses. These factors harmfully affect growth and development in several vegetable and field crops by causing harmful effects on physiological and biochemical characteristics such as water uptake, photosynthesis, relative water content, electrolyte leakage, and antioxidant compounds linked with oxidative stress and the accumulation of reactive oxygen species (ROS). These oxidative stress-related components affect most physiological and biochemical characteristics in plants under natural conditions and environmental stresses, especially weed infestation, salinity, and drought stress. ROS such as superoxide (O2•−), hydrogen peroxide (H2O2), peroxyl radical (ROO•), and singlet oxygen (1O2) are very important molecules produced naturally as by-products of metabolic processes in chloroplasts, mitochondria, peroxisomes, and the apoplast. Under stress conditions such as weed infestation, drought and salinity, the morphological and yield characteristics of stressed plants are negatively affected; however, superoxide (O2•−) and hydrogen peroxide (H2O2) are significantly increased. The negative impact of weeds can be mitigated with integrated controls which include herbicides, allelopathy, and crop rotation as well as the different methods for weed control. The defense system in various crops mainly depends on both enzymatic and nonenzymatic antioxidants. The enzymatic antioxidants include superoxide dismutase, glutathione reductase, and catalase; nonenzymatic antioxidants include ascorbic acid, carotenoids, α-Tocopherols, proline, glutathione, phenolics, and flavonoids. These antioxidant components can scavenge various ROS under several stresses, particularly weeds, drought and salinity. In this review, our objective is to shed light on integrated weeds management and plant tolerance to salinity and drought stresses associated with the ROS and the induction of antioxidant components to increase plant growth and yield in the vegetable and field crops

    Physiological and Biochemical Changes in Vegetable and Field Crops under Drought, Salinity and Weeds Stresses: Control Strategies and Management

    No full text
    Weeds are one of the most damaging biotic stresses in crop production, and drought and salinity are considered the most serious abiotic stresses. These factors harmfully affect growth and development in several vegetable and field crops by causing harmful effects on physiological and biochemical characteristics such as water uptake, photosynthesis, relative water content, electrolyte leakage, and antioxidant compounds linked with oxidative stress and the accumulation of reactive oxygen species (ROS). These oxidative stress-related components affect most physiological and biochemical characteristics in plants under natural conditions and environmental stresses, especially weed infestation, salinity, and drought stress. ROS such as superoxide (O2&bull;&minus;), hydrogen peroxide (H2O2), peroxyl radical (ROO&bull;), and singlet oxygen (1O2) are very important molecules produced naturally as by-products of metabolic processes in chloroplasts, mitochondria, peroxisomes, and the apoplast. Under stress conditions such as weed infestation, drought and salinity, the morphological and yield characteristics of stressed plants are negatively affected; however, superoxide (O2&bull;&minus;) and hydrogen peroxide (H2O2) are significantly increased. The negative impact of weeds can be mitigated with integrated controls which include herbicides, allelopathy, and crop rotation as well as the different methods for weed control. The defense system in various crops mainly depends on both enzymatic and nonenzymatic antioxidants. The enzymatic antioxidants include superoxide dismutase, glutathione reductase, and catalase; nonenzymatic antioxidants include ascorbic acid, carotenoids, &alpha;-Tocopherols, proline, glutathione, phenolics, and flavonoids. These antioxidant components can scavenge various ROS under several stresses, particularly weeds, drought and salinity. In this review, our objective is to shed light on integrated weeds management and plant tolerance to salinity and drought stresses associated with the ROS and the induction of antioxidant components to increase plant growth and yield in the vegetable and field crops

    Postharvest Exogenous Melatonin Treatment of Table Grape Berry Enhances Quality and Maintains Bioactive Compounds during Refrigerated Storage

    No full text
    Table grape berries are classified as a perishable crop that deteriorates quickly after harvest. The application of melatonin after harvest was found to be effective for retarding senescence and slowing ripening. In the current study, we tested the influence of two melatonin concentrations (50 and 100 µmol) as a postharvest application on quality, bioactive compounds, and enzyme activities of grape berries cv “Crimson” stored at 0 ± 1 °C and 90% relative humidity (RH) for 35 days. Our results indicated that melatonin application extends the shelf-life of berries by reducing weight loss and maintaining total soluble solids (TSS), titratable acidity (TA), berry adherence strength, and firmness. Melatonin treatment also reduced pectin methyl esterase (PME) and polygalactouranase (PG) enzyme activities compared to the control. Moreover, O2•− and H2O2 rates in berries were reduced by high melatonin concentration. Moreover, peroxidase (POD) and catalase (CAT) enzyme activities were increased by melatonin application. Our findings suggested using melatonin postharvest to increase shelf life and maintain quality attributes during refrigerated storage, which could be advantageous on a large scale

    Data_Sheet_1_Impact of Plantago ovata Forsk leaf extract on morpho-physio-biochemical attributes, ions uptake and drought resistance of wheat (Triticum aestivum L.) seedlings.docx

    No full text
    The present study was conducted to examine the potential role of Plantago ovata Forsk leaf extract (POLE) which was applied at various concentration levels (control, hydropriming, 10, 20, 30, and 40% POLE) to the wheat (Triticum aestivum L.) seedlings. Drought stressed was applied at 60% osmotic potential (OM) to the T. aestivum seedlings to study various parameters such as growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress and response of various antioxidants and nutritional status of the plants. Various growth parameters such as gaseous exchange attributes, antioxidants and nutritional status of T. aestivum were investigated in this study. It was evident that drought-stressed condition had induced a negative impact on plant growth, photosynthetic pigment, gaseous exchange attributes, stomatal properties, and ion uptake by different organs (roots and shoots) of T. aestivum. The decrease in plant growth resulted from oxidative stress and overcome by the antioxidant (enzymatic and non-enzymatic) compounds, since their concentration increased in response to dehydration. Seed priming with POLE positively increased plant growth and photosynthesis, by decreasing oxidative stress indicators and increasing activities of antioxidant (enzymatic and non-enzymatic) compounds, compared to the plants which were grown without the application of POLE. Our results also depicted that optimum concentration of POLE for T. aestivum seedlings under drought condition was 20%, while further increase in POLE (30 and 40%) induced a non-significant (P < 0.05) effect on growth (shoot and root length) and biomass (fresh and dry weight) of T. aestivum seedling. Here we concluded that the understanding of the role of seed priming with POLE in the increment of growth profile, photosynthetic measurements and nutritional status introduces new possibilities for their effective use in drought-stressed condition and provides a promising strategy for T. aestivum tolerance against drought-stressed condition.</p

    Folic Acid Reinforces Maize Tolerance to Sodic-Alkaline Stress through Modulation of Growth, Biochemical and Molecular Mechanisms

    No full text
    The mechanism by which folic acid (FA) or its derivatives (folates) mediates plant tolerance to sodic-alkaline stress has not been clarified in previous literature. To apply sodic-alkaline stress, maize seedlings were irrigated with 50 mM of a combined solution (1:1) of sodic-alkaline salts (NaHCO3 and Na2CO3; pH 9.7). Maize seedlings under stressed and non-stressed conditions were sprayed with folic acid (FA) at 0 (distilled water as control), 0.05, 0.1, and 0.2 mM. Under sodic-alkaline stress, FA applied at 0.2 mM significantly improved shoot fresh weight (95%), chlorophyll (Chl a (41%), Chl b (57%), and total Chl (42%)), and carotenoids (27%) compared to the untreated plants, while root fresh weight was not affected compared to the untreated plants. This improvement was associated with a significant enhancement in the cell-membrane stability index (CMSI), relative water content (RWC), free amino acids (FAA), proline, soluble sugars, K, and Ca. In contrast, Na, Na/K ratio, H2O2, malondialdehyde (MDA), and methylglycoxal (MG) were significantly decreased. Moreover, seedlings treated with FA demonstrated significantly higher activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) compared to the untreated plants. The molecular studies using RT-qPCR demonstrated that FA treatments, specifically at 0.2 mM, enhanced the K+/Na+ selectivity and the performance of photosynthesis under alkaline-stress conditions. These responses were observed through up-regulation of the expression of the high-affinity potassium-transporter protein (ZmHKT1), the major core protein of photosystem II (D2-Protein), and the activity of the first enzyme of carbon fixation cycle in C4 plants (PEP-case) by 74, 248, and 225% over the untreated plants, respectively. Conversely, there was a significant down-regulation in the expression ZmSOS1 and ZmNHX1 by 48.2 and 27.8%, respectively, compared to the untreated plants
    corecore