21 research outputs found

    Long-range repulsive interaction between TTF molecules on a metal surface induced by charge transfer

    Full text link
    The low-coverage adsorption of a molecular electron donor, tetrathiafulvalene, on Au(111) is characterized by the spontaneous formation of superlattice of monomers, whose spacing exceeds the equilibrium distance of non-covalent interactions and depends on coverage. The origin of this peculiar growth mode is due to a long-range repulsive interaction between molecules. The analysis of molecular-pair distributions obtained by scanning tunneling microscopy measurements permits us to determine that the nature of TTF intermolecular interactions on Au (111) is electrostatic. A repulsion between molecules is caused by the accumulation of charge due to electron donation into the metal surface, as pictured through density functional theory calculations

    Inelastic effects in electron transport studied with wave packet propagation

    Full text link
    A time-dependent approach is used to explore inelastic effects during electron transport through few-level systems. We study a tight-binding chain with one and two sites connected to vibrations. This simple but transparent model gives insight about inelastic effects, their meaning and the approximations currently used to treat them. Our time-dependent approach allows us to trace back the time sequence of vibrational excitation and electronic interference, the ibrationally introduced time delay and the electronic phase shift. We explore a full range of parameters going from weak to strong electron-vibration coupling, from tunneling to contact, from one-vibration description to the need of including all vibrations for a correct description of inelastic effects in transport. We explore the validity of single-site resonant models as well as its extension to more sites via molecular orbitals and the conditions under which multi-orbital, multi-vibrational descriptions cannot be simplified. We explain the physical meaning of the spectral features in the second derivative of the electron current with respect to the bias voltage. This permits us to nuance the meaning of the energy value of dips and peaks. Finally, we show that finite-band effects lead to electron back-scattering off the molecular vibrations in the regime of high-conductance, although the drop in conductance at the vibrational threshold is rather due to the rapid variation of the vibronic density of states.Comment: 38 pages, 14 figure

    Energetics and stability of dangling-bond silicon wires on H passivated Si(100)

    Full text link
    We evaluate the electronic, geometric and energetic properties of quasi 1-D wires formed by dangling bonds on Si(100)-H (2 x 1). The calculations are performed with density functional theory (DFT). Infinite wires are found to be insulating and Peierls distorted, however finite wires develop localized electronic states that can be of great use for molecular-based devices. The ground state solution of finite wires does not correspond to a geometrical distortion but rather to an antiferromagnetic ordering. For the stability of wires, the presence of abundant H atoms in nearby Si atoms can be a problem. We have evaluated the energy barriers for intradimer and intrarow diffusion finding all of them about 1 eV or larger, even in the case where a H impurity is already sitting on the wire. These results are encouraging for using dangling-bond wires in future devices.Comment: 8 pages, 6 figure

    Elastic transport through dangling-bond silicon wires on H passivated Si(100)

    Full text link
    We evaluate the electron transmission through a dangling-bond wire on Si(100)-H (2x1). Finite wires are modelled by decoupling semi-infinite Si electrodes from the dangling-bond wire with passivating H atoms. The calculations are performed using density functional theory in a non-periodic geometry along the conduction direction. We also use Wannier functions to analyze our results and to build an effective tight-binding Hamiltonian that gives us enhanced insight in the electron scattering processes. We evaluate the transmission to the different solutions that are possible for the dangling-bond wires: Jahn-Teller distorted ones, as well as antiferromagnetic and ferromagnetic ones. The discretization of the electronic structure of the wires due to their finite size leads to interesting transmission properties that are fingerprints of the wire nature

    Adsorption and (photo-) electrochemical splitting of water on rutile ruthenium dioxide

    No full text
    In this work, the adsorption and splitting of the water molecule by light and/or an external potential is investigated in the frame of (photo-) electrochemical cells using a rutile ruthenium dioxide anode. With the help of periodic density functional calculations, the adsorbed structures of H2O and some radicals involved in the splitting process (O, OH, OOH) are obtained and compared with the available experimental results. On the basis of these electronic-structure calculations, we use a method to calculate the stability of the reaction intermediates and conclude on the thermodynamical possibility of the water splitting reaction at the surface. We demonstrate that a moderate overpotential of 0.64 V is required for the reaction to take place at the RuO2(110) surface

    Coherent electron–nuclear coupling in oligothiophene molecular wires

    No full text
    In molecular electronics individual molecules serve as electronic devices. In these systems, electron–vibron (e–ν) coupling can be expected to lead to new physical phenomena and potential device functions1, 2, 3. In previous studies of molecular wires, the e–ν coupling occurred as a result of the well-known Franck–Condon principle, for which the Born–Oppenheimer approximation holds. This means that after a vibronic excitation, the electrons and the vibrations evolve independently from each other. Here we show that this simple picture changes markedly when two electronic levels in a molecule are coupled by a molecular vibration4, 5. In molecular wires we observe a non-Born–Oppenheimer regime, for which a coherent coupling of electronic and nuclear motion emerges6. This phenomenon should occur in all systems with strong electron–vibration coupling and an electronic level spacing of the order of vibrational energies. The coherent coupling of electronic and nuclear motion could be used to implement mechanical control of electron transport in molecular electronics
    corecore