2,683 research outputs found

    Linking the fate of massive black hole binaries to the active galactic nuclei luminosity function

    Full text link
    Massive black hole binaries are naturally predicted in the context of the hierarchical model of structure formation. The binaries that manage to lose most of their angular momentum can coalesce to form a single remnant. In the last stages of this process, the holes undergo an extremely loud phase of gravitational wave emission, possibly detectable by current and future probes. The theoretical effort towards obtaining a coherent physical picture of the binary path down to coalescence is still underway. In this paper, for the first time, we take advantage of observational studies of active galactic nuclei evolution to constrain the efficiency of gas-driven binary decay. Under conservative assumptions we find that gas accretion toward the nuclear black holes can efficiently lead binaries of any mass forming at high redshift (> 2) to coalescence within the current time. The observed "downsizing" trend of the accreting black hole luminosity function further implies that the gas inflow is sufficient to drive light black holes down to coalescence, even if they bind in binaries at lower redshifts, down to z~0.5 for binaries of ~10 million solar masses, and z~0.2 for binaries of ~1 million solar masses. This has strong implications for the detection rates of coalescing black hole binaries of future space-based gravitational wave experiments.Comment: 6 pages, 3 figure, accepted for publication in MNRA

    Gas inflows, star formation and metallicity evolution in galaxy pairs

    Full text link
    It has been known since many decades that galaxy interactions can induce star formation (hereafter SF) enhancements and that one of the driving mechanisms of this enhancement is related to gas inflows into the central galaxy regions, induced by asymmetries in the stellar component, like bars. In the last years many evidences have been accumulating, showing that interacting pairs have central gas-phase metallicities lower than those of field galaxies, by {\sim} 0.2-0.3 dex on average. These diluted ISM metallicities have been explained as the result of inflows of metal-poor gas from the outer disk to the galaxy central regions. A number of questions arises: What's the timing and the duration of this dilution? How and when does the SF induced by the gas inflow enrich the circumnuclear gas with re-processed material? Is there any correlation between the timing and strength of the dilution and the timing and intensity of the SF? By means of Tree-SPH simulations of galaxy major interactions, we have studied the effect that gas inflows have on the ISM dilution, and the effect that the induced SF has, subsequently, in re-enriching the nuclear gas. In this contribution, we present the main results of this study.Comment: Proceedings of the IAU Symposium 277 "Tracing the Ancestry of Galaxies", 4 pages, 2 figure

    Fractal correlations in the CfA2-South redshift survey

    Get PDF
    We report our analysis of the properties of galaxy clustering for a new redshift sample of galaxies, the CfA2-South catalog, using statistical methods which do not rely on the assumption of homogeneity. We find that, up to ~ 20 Mpc/h, which is the largest scale to which correlation properties can be reliably inferred, the galaxy clustering is scale-invariant and characterized by a fractal dimension D=1.9 \pm 0.1. Further there is no statistical evidence for homogeneity at any of the larger scales (up to ~150 Mpc/h) probed more weakly by the catalog. These results means that characteristic ``correlation lengths'' for the clustering of galaxies derived using standards methods of analysis are not meaningful. Further the results are very consistent with those obtained from many other catalogs using the methods adopted here, which show the D =2 fractal continuing to beyond 100 Mpc/h. The incompleteness of the relevant data conjectured by various authors to give rise to such behaviour is therefore proved to have no significant effect (up to 20 Mpc/h) on the measured correlations.Comment: 18 pages, latex, 1 postscript figure, also available at http://www.phys.uniroma1.it/DOCS/PIL/pil.html Accepted for publication in Astrophysical Journal Letter

    Wastewater workers and hepatitis A virus infection.

    Get PDF
    The main occupational hazard of wastewater workers (WWs) is the direct exposure to the variety of infectious agents present in sewage material, with hepatitis A virus (HAV) being the most frequent one. Most epidemiological studies have shown a higher risk of hepatitis A among WWs, although some studies have produced conflicting evidence. To evaluate the hypothesis of increased risk of HAV infection in WWs. The prevalence of antibodies toHAV in 869WWswas compared to 311 other subjects and analysed to detect the main potentially confounding variables. Univariate analysis demonstrated that occupational exposure to sewage was not significantly associated with the prevalence of anti-HAV(1). The anti-HAV(1) prevalence was strongly associated with age and shellfish consumption (P,0.05) when the subcategories of workers were examined separately (WWs and control group) and jointly. In the logistic regression model, a significant association between anti-HAV(1) prevalence and duration of employment (P,0.05) was found. The interaction term(age3duration of employment) was significant (P,0.001) when included in the logistic model. This study shows that working in a wastewater treatment plant does not seem to be related to a greater prevalence of antibodies to hepatitis A. Moreover, the relative risk of HAV infection among WWs seems to be correlated with low anti-HAV(1) prevalence in the general population
    • …
    corecore