78 research outputs found

    Rat Race Dynamics and Crazy Companies: The Diffusion of Technologies and Social Behavior

    Get PDF
    How and why do technologies spread when and where they do? What are the implications and consequences for the structure, wealth, and management of human organizations? These expansive questions were the subject of the presentations and discussions of the International Conference on Diffusion of Technologies and Social Behavior, summarized in this chapter. The chapter is organized under the following headings: empirical regularities; theoretical issues; predictability; roles of time and space; definition of niche and innovation; selection dynamics; role of marketing; social aspects of diffusion; globalization of diffusion processes; and applications of diffusion. While the chapter treats some questions for policy in both the public and private sectors, it emphasizes research needs and opportunities in the diffusion field

    Geometry-controlled kinetics

    Full text link
    It has long been appreciated that transport properties can control reaction kinetics. This effect can be characterized by the time it takes a diffusing molecule to reach a target -- the first-passage time (FPT). Although essential to quantify the kinetics of reactions on all time scales, determining the FPT distribution was deemed so far intractable. Here, we calculate analytically this FPT distribution and show that transport processes as various as regular diffusion, anomalous diffusion, diffusion in disordered media and in fractals fall into the same universality classes. Beyond this theoretical aspect, this result changes the views on standard reaction kinetics. More precisely, we argue that geometry can become a key parameter so far ignored in this context, and introduce the concept of "geometry-controlled kinetics". These findings could help understand the crucial role of spatial organization of genes in transcription kinetics, and more generally the impact of geometry on diffusion-limited reactions.Comment: Submitted versio

    Is the Equivalence Principle violated by Generalized Uncertainty Principles and Holography in a brane-world?

    Full text link
    It has been recently debated whether a class of generalized uncertainty principles that include gravitational sources of error are compatible with the holographic principle in models with extra spatial dimensions. We had in fact shown elsewhere that the holographic scaling is lost when more than four space-time dimensions are present. However, we shall show here that the validity of the holographic counting can be maintained also in models with extra spatial dimensions, but at the intriguing price that the equivalence principle for a point-like source be violated and the inertial mass differ from the gravitational mass in a specific non-trivial way.Comment: 5 pages, latex fil

    A Brownian particle in a microscopic periodic potential

    Full text link
    We study a model for a massive test particle in a microscopic periodic potential and interacting with a reservoir of light particles. In the regime considered, the fluctuations in the test particle's momentum resulting from collisions typically outweigh the shifts in momentum generated by the periodic force, and so the force is effectively a perturbative contribution. The mathematical starting point is an idealized reduced dynamics for the test particle given by a linear Boltzmann equation. In the limit that the mass ratio of a single reservoir particle to the test particle tends to zero, we show that there is convergence to the Ornstein-Uhlenbeck process under the standard normalizations for the test particle variables. Our analysis is primarily directed towards bounding the perturbative effect of the periodic potential on the particle's momentum.Comment: 60 pages. We reorganized the article and made a few simplifications of the conten

    A field-theoretic approach to the Wiener Sausage

    Get PDF
    The Wiener Sausage, the volume traced out by a sphere attached to a Brownian particle, is a classical problem in statistics and mathematical physics. Initially motivated by a range of field-theoretic, technical questions, we present a single loop renormalised perturbation theory of a stochastic process closely related to the Wiener Sausage, which, however, proves to be exact for the exponents and some amplitudes. The field-theoretic approach is particularly elegant and very enjoyable to see at work on such a classic problem. While we recover a number of known, classical results, the field-theoretic techniques deployed provide a particularly versatile framework, which allows easy calculation with different boundary conditions even of higher momenta and more complicated correlation functions. At the same time, we provide a highly instructive, non-trivial example for some of the technical particularities of the field-theoretic description of stochastic processes, such as excluded volume, lack of translational invariance and immobile particles. The aim of the present work is not to improve upon the well-established results for the Wiener Sausage, but to provide a field-theoretic approach to it, in order to gain a better understanding of the field-theoretic obstacles to overcome.Comment: 45 pages, 3 Figures, Springer styl

    Modeling the scaling properties of human mobility

    Full text link
    While the fat tailed jump size and the waiting time distributions characterizing individual human trajectories strongly suggest the relevance of the continuous time random walk (CTRW) models of human mobility, no one seriously believes that human traces are truly random. Given the importance of human mobility, from epidemic modeling to traffic prediction and urban planning, we need quantitative models that can account for the statistical characteristics of individual human trajectories. Here we use empirical data on human mobility, captured by mobile phone traces, to show that the predictions of the CTRW models are in systematic conflict with the empirical results. We introduce two principles that govern human trajectories, allowing us to build a statistically self-consistent microscopic model for individual human mobility. The model not only accounts for the empirically observed scaling laws but also allows us to analytically predict most of the pertinent scaling exponents

    Random Walks on Stochastic Temporal Networks

    Full text link
    In the study of dynamical processes on networks, there has been intense focus on network structure -- i.e., the arrangement of edges and their associated weights -- but the effects of the temporal patterns of edges remains poorly understood. In this chapter, we develop a mathematical framework for random walks on temporal networks using an approach that provides a compromise between abstract but unrealistic models and data-driven but non-mathematical approaches. To do this, we introduce a stochastic model for temporal networks in which we summarize the temporal and structural organization of a system using a matrix of waiting-time distributions. We show that random walks on stochastic temporal networks can be described exactly by an integro-differential master equation and derive an analytical expression for its asymptotic steady state. We also discuss how our work might be useful to help build centrality measures for temporal networks.Comment: Chapter in Temporal Networks (Petter Holme and Jari Saramaki editors). Springer. Berlin, Heidelberg 2013. The book chapter contains minor corrections and modifications. This chapter is based on arXiv:1112.3324, which contains additional calculations and numerical simulation

    First-passage times in complex scale-invariant media

    Full text link
    How long does it take a random walker to reach a given target point? This quantity, known as a first passage time (FPT), has led to a growing number of theoretical investigations over the last decade1. The importance of FPTs originates from the crucial role played by first encounter properties in various real situations, including transport in disordered media, neuron firing dynamics, spreading of diseases or target search processes. Most methods to determine the FPT properties in confining domains have been limited to effective 1D geometries, or for space dimensions larger than one only to homogeneous media1. Here we propose a general theory which allows one to accurately evaluate the mean FPT (MFPT) in complex media. Remarkably, this analytical approach provides a universal scaling dependence of the MFPT on both the volume of the confining domain and the source-target distance. This analysis is applicable to a broad range of stochastic processes characterized by length scale invariant properties. Our theoretical predictions are confirmed by numerical simulations for several emblematic models of disordered media, fractals, anomalous diffusion and scale free networks.Comment: Submitted version. Supplementary Informations available on Nature websit

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
    • 

    corecore