4 research outputs found

    Short-term effects of ambient ozone on stroke risk in South Carolina

    Get PDF
    Recent reports have suggested that exposure to ozone is associated with stroke events; however, findings have been inconsistent. Utilizing a case-crossover study design, we explored the association between acute ozone exposure (maximum 8-hour daily average) and risk of stroke hospitalization among South Carolina residents and effect modification by race and gender. For total stroke (ischemic and hemorrhagic combined), a 10 ppb increase in ozone exposure on the day of hospitalization was associated with an increased risk of stroke hospitalization (OR: 1.08; 95% CI, 1.06, 1.11). Effects were similar for other lag days; however, the association was strongest for lag days 0-6 (OR: 1.20; 95% CIs 1.16, 1.24). We observed subtle differences in total stroke risk by gender, with females having a slightly lower risk than males, although CIs overlapped considerably. For hemorrhagic stroke, there was evidence of effect modification by race for all time periods of ozone exposure considered

    Inflammation and acute traffic-related air pollution exposures among a cohort of youth with type 1 diabetes

    Get PDF
    Background: Evidence remains equivocal regarding the association of inflammation, a precursor to cardiovascular disease, and acute exposures to ambient air pollution from traffic-related particulate matter. Though youth with type 1 diabetes are at higher risk for cardiovascular disease, the relationship of inflammation and ambient air pollution exposures in this population has received little attention. Objectives: Using five geographically diverse US sites from the racially- and ethnically-diverse SEARCH for Diabetes in Youth Cohort, we examined the relationship of acute exposures to PM2.5 mass, Atmospheric Dispersion Modeling System (ADMS)-Roads traffic-related PM concentrations near roadways, and elemental carbon (EC) with biomarkers of inflammation including interleukin-6 (IL-6), c-reactive protein (hs-CRP) and fibrinogen. Methods: Baseline questionnaires and blood were obtained at a study visit. Using a spatio-temporal modeling approach, pollutant exposures for 7 days prior to blood draw were assigned to residential addresses. Linear mixed models for each outcome and exposure were adjusted for demographic and lifestyle factors identified a priori. Results: Among the 2566 participants with complete data, fully-adjusted models showed positive associations of EC average week exposures with IL-6 and hs-CRP, and PM2.5 mass exposures on lag day 3 with IL-6 levels. Comparing the 25th and 75th percentiles of average week EC exposures resulted in 8.3% higher IL-6 (95%CI: 2.7%,14.3%) and 9.8% higher hs-CRP (95%CI: 2.4%,17.7%). We observed some evidence of effect modification for the relationships of PM2.5 mass exposures with hs-CRP by gender and with IL-6 by race/ethnicity. Conclusions: Indicators of inflammation were associated with estimated traffic-related air pollutant exposures in this study population of youth with type 1 diabetes. Thus youth with type 1 diabetes may be at increased risk of air pollution-related inflammation. These findings and the racial/ethnic and gender differences observed deserve further exploration

    Exposure to Ambient Air Pollution and Correlates of Cardiovascular Disease among Youth with Type 1 Diabetes

    No full text
    Air pollution from traffic-related sources is associated with cardiovascular disease (CVD), potentially through changes in systemic inflammatory responses, vascular function and oxidative stress leading to atherosclerosis, thrombosis or endothelial dysfunction. Individuals with type 1 diabetes (T1D) have a greater risk of CVD-related morbidity and mortality than the general population, and they may be more susceptible to the effects of air pollution on CVD. Although these increased risks begin during childhood, very few studies have assessed the impact of air pollution on children and youth with T1D. This dissertation directly addresses gaps in the epidemiologic evidence by: 1) evaluating the relationship of short-term exposures to traffic-related air pollutants with pulse wave velocity (PWV), a measure of arterial stiffness, 2) assessing the effects of changes in air pollution exposures on changes in inflammatory biomarkers, including C-reactive protein, fibrinogen and interleukin-6 (IL-6), and 3) examining the relationship of long-term exposures to traffic-related air pollution with allostatic load (AL), a measure of cumulative biological risk, among a cohort of youth with T1D. Data were obtained from the SEARCH for Diabetes in Youth (SEARCH) study. SEARCH was initiated in 2000 and includes a diverse population of US youth diagnosed with diabetes prior to age 20 years. Anthropometric and laboratory measures were taken at SEARCH study visits, and standardized questionnaires were used to collect information on important covariates. Air pollution exposures were estimated using spatio-temporal models and assigned to residential addresses for each participant. In the first study, we identified a significant association between increased exposure to PM2.5 on the day of the examination with higher PWV using generalized linear models adjusted for lifestyle and demographic characteristics. In the second analysis, we found consistent positive effects of increases in PM2.5 over the week prior to the examination with IL-6 using longitudinal mixed models. In the third study, no significant associations were observed for monthly and annual PM2.5 exposures or proximity to major roadways with AL in fully adjusted linear mixed models. However, effects differed by race/ethnicity and gender. Overall, this research indicates that youth with T1D may be at higher risk for air pollution-related cardiovascular impacts
    corecore