6 research outputs found
A candidate locus for variation in dispersal rate in a butterfly metapopulation
Frequent extinctions of local populations in metapopulations create opportunities for migrant females to establish new populations. In a metapopulation of the Glanville fritillary butterfly (Melitaea cinxia), more mobile individuals are more likely to establish new populations, especially in habitat patches that are poorly connected to existing populations. Here we show that flight metabolic rate and the frequency of a specific allele of the metabolic enzyme phosphoglucose isomerase (pgi) were both highest in newly established, isolated populations. Furthermore, genotypes with this pgi allele had elevated flight metabolic rates. These results suggest that genetic variation in pgi or a closely linked locus has a direct effect on flight metabolism, dispersal rate, and thereby on metapopulation dynamics in this species. These results also contribute to an emerging understanding of the mechanisms by which population turnover in heterogeneous landscapes may maintain genetic and phenotypic variation across populations
Beyond the Powerhouse: Integrating Mitonuclear Evolution, Physiology, and Theory in Comparative Biology
Eukaryotes are the outcome of an ancient symbiosis and as such, eukaryotic cells fundamentally possess two genomes. As a consequence, gene products encoded by both nuclear and mitochondrial genomes must interact in an intimate and precise fashion to enable aerobic respiration in eukaryotes. This genomic architecture of eukaryotes is proposed to necessitate perpetual coevolution between the nuclear and mitochondrial genomes to maintain coadaptation, but the presence of two genomes also creates the opportunity for intracellular conflict. In the collection of papers that constitute this symposium volume, scientists working in diverse organismal systems spanning vast biological scales address emerging topics in integrative, comparative biology in light of mitonuclear interactions