531 research outputs found

    The benefit of high-conductivity materials in film cooled turbine nozzles

    Get PDF
    This study presents an experimental and numerical investigation of the beneficial effect of higher conductivity materials in HP turbine nozzles. Most of the literature studies focus on the maximum temperature that a nozzle can withstand, whereas the effect of thermal gradients is often neglected. However thermal gradients have higher influence on the life of the components and they have to be given careful consideration. In this work it is shown that thermal gradients are reduced by using high conductivity materials and, as a consequence, the nozzles life is appreciably increased. A representative film cooled leading edge with an internal impingement plate was studied experimentally at Texas AM University. Two materials were used, namely polycarbonate and stainless steel, in order to highlight the impact of conduction on coolant effectiveness. Numerically conjugate heat transfer simulations have been carried out with an in house solver to analyse in detail the impact of conduction and internal convection. Both experimental and numerical results show that by increasing the conductivity in the solid region, the thermal gradients are strongly reduced. Numerically it is shown that using inserts of nickel-aluminide alloys in nozzles may reduce the thermal gradients from 3 to 4 times if compared to nowadays design. © 2012 Elsevier Inc

    Elimination of congenital rubella: a seroprevalence study of pregnant women and women of childbearing age in Italy

    Get PDF
    Prevention of congenital rubella is achieved by vaccination of susceptible women of childbearing age. In Italy, the National Plan for Measles and Congenital Rubella Elimination 2010–2015 implemented catch-up vaccination activities targeting susceptible adolescents and young adults, including women of childbearing age. The aim of this study was to assess the immunity against rubella in women of childbearing age in Tuscany (Central Italy) and Apulia (Southern Italy) and pregnant women in Apulia after the implementation of the National Plan for Measles and Congenital Rubella Elimination. Overall, anti-rubella IgG prevalence in women of childbearing age samples was 88.6% in Tuscany and 84.3% in Apulia. The lowest prevalence was observed in samples of 26–35 years old women of childbearing age in Apulia with 77.8%. Only 62.7% of samples from 26–35 years old pregnant women had IgG against rubella, and one sample out of 95 was positive to IgM. The findings of this study highlight the need for increasing awareness on the risk of contracting rubella infection during pregnancy and implement vaccination strategies to create opportunities for administration of rubella containing vaccines in young girls and women of childbearing age

    Surveillance for Antimicrobial Resistance in Croatia

    Get PDF
    This study intended to verify, through microbiological techniques and TEM investigations, the killing of bacterial spores after treatment in steam autoclave, and to propose strictly morphological considerations about the target of this sterilisation process. Autoclave is the most common device for sterilising instruments in order to prevent cross infections in dental offices. The autoclave efficiency has been improved in the last years and part of this improvement is related to both a better and more correct use of the autoclave system and to the technological innovations introduced in the last generation of devices. However, associations as ADA or CDC suggest to regularly verify the process of 'autoclaving' through biological indicators (BI). The most commonly used BI are made of spores strips or suspensions of Bacillus Subtilis (pb 168) and Bacillus Stearothermophilus (ATCC 10149). They visually prove, changing colours on enzymatic base, the death of micro-organism and if the physical parameters, necessary for sterilisation, have been achieved. These two strains of endospore-forming bacteria were processed and prepared following two different techniques: Karnovsky fixed and epon embedded--phosphotungstic acid fixed for direct observation. The kind and the extent of analysed modifications are extremely various: from deep lacerations, which changed the spore structure, to little clefts which let the cytoplasm go out

    Neural network topology for wind turbine analysis

    Get PDF
    In this work Artificial Neural Networks (ANN) are used for a multi-target optimization of the aerodynamics of a wind turbine blade. The Artificial Neural Network is used to build a meta-model of the blade, which is then optimized according to the imposed criteria. The neural networks are trained with a data set built by a series of CFD simulations and their configuration (number of neurons and layers) selected to improve performances and avoid over-fitting. The basic configuration of the airfoil is the profile S809, which is commonly used in horizontal axis wind turbines (HAWT), equipped with a Coanda jet. The design position and momentum of the jet are optimized to maximize aerodynamic efficiency and minimize the power required to activate the Coanda Jet

    Stochastic Variation of the Aero-Thermal Flow Field in a Cooled High-Pressure Transonic Vane Configuration

    Get PDF
    In transonic high-pressure turbine stages, oblique shocks originated from vane trailing edges impact the rear suction side of each adjacent vane. High-pressure vanes are usually cooled to tolerate the combustor exit temperature levels, which would reduce dramatically the residual life of a solid vane. Then, it is highly probable that shock impingement will occur in proximity of one of the coolant rows. It has already been observed that the presence of an adverse pressure gradient generates non-negligible effects on heat load due to the increase in boundary layer thickness and turbulence level, with a detrimental impact on the local adiabatic effectiveness values. Furthermore, the generation of a tornado-like vortex has been recently observed that could further decrease the efficacy of the cooling system by moving cold flow far from the vane wall. It must be also underlined that manufacturing deviations and in-service degradation are responsible for the stochastic variation of geometrical parameters. This latter phenomenon greatly alters the unsteady location of the shock impingement and the time-dependent thermal load on the vane. Present work starts from what is shown in literature and provides a highly-detailed description of the aero-thermal field that occurs on a model that represents the flow conditions occurring on the rear suction side of a cooled vane. The numerical model is initially validated against the experimental data obtained by the University of Karlsruhe during TATEF2 EU project, and then an uncertainty quantification methodology based on the probabilistic collocation method and on Padè's polynomials is used to consider the probability distribution of the geometrical parameters. The choice of aleatory unknowns allows to consider the mutual effects between shock-waves, trailing edge thickness and hole diameter. Turbulence is modelled by using the Reynolds Stress Model already implemented in ANSYS® Fluent®. Special attention is paid to the description of the flow field in the shock/boundary layer interaction region, where the presence of a secondary effects will completely change the local adiabatic effectiveness values

    Generalization of particle impact behavior in gas turbine via non-dimensional grouping

    Get PDF
    Fouling in gas turbines is caused by airborne contaminants which, under certain conditions, adhere to aerodynamic surfaces upon impact. The growth of solid deposits causes geometric modifications of the blades in terms of both mean shape and roughness level. The consequences of particle deposition range from performance deterioration to life reduction to complete loss of power. Due to the importance of the phenomenon, several methods to model particle sticking have been proposed in literature. Most models are based on the idea of a sticking probability, defined as the likelihood a particle has to stick to a surface upon impact. Other models investigate the phenomenon from a deterministic point of view by calculating the energy available before and after the impact. The nature of the materials encountered within this environment does not lend itself to a very precise characterization, consequently, it is difficult to establish the limits of validity of sticking models based on field data or even laboratory scale experiments. As a result, predicting the growth of solid deposits in gas turbines is still a task fraught with difficulty. In this work, two nondimensional parameters are defined to describe the interaction between incident particles and a substrate, with particular reference to sticking behavior in a gas turbine. In the first part of the work, historical experimental data on particle adhesion under gas turbine-like conditions are analyzed by means of relevant dimensional quantities (e.g. particle viscosity, surface tension, and kinetic energy). After a dimensional analysis, the data then are classified using non-dimensional groups and a universal threshold for the transition from erosion to deposition and from fragmentation to splashing based on particle properties and impact conditions is identified. The relation between particle kinetic energy/surface energy and the particle temperature normalized by the softening temperature represents the original non-dimensional groups able to represent a basis of a promising adhesion criterion
    • …
    corecore