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ABSTRACT
In this work Artificial Neural Networks (ANN) are used for a multi-target optimization of
the aerodynamics of a wind turbine blade. The Artificial Neural Network is used to build
a meta-model of the blade, which is then optimized according to the imposed criteria. The
neural networks are trained with a data set built by a series of CFD simulations and their
configuration (number of neurons and layers) selected to improve performances and avoid
over-fitting. The basic configuration of the airfoil is the profile S809, which is commonly
used in horizontal axis wind turbines (HAWT), equipped with a Coanda jet. The design
position and momentum of the jet are optimized to maximize aerodynamic efficiency and
minimize the power required to activate the Coanda Jet.
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NOMENCLATURE
ANN Artificial Neural Network
c Airfoil chord
CD Drag Coefficient
CL Lift Coefficient
Cµ Jet momentum
f(x) Transfer function
HAWT Horizontal Axis Wind Turbines
MSE Mean Square Error
NN Neural Network
tjet Jet thickness
vinlet Velocity at the Inlet
vjet Jet input velocity
x
c

Position of the jet as fraction of the Airfoil chord
α Angle of Attack
Γ Expansion Ratio of the Jet
η Aerodynamic Efficiency
ρjet Density of Jet flow
ρ Density of incoming flow
ωi,j Neuron weight
bi Neuron bias
ỹ NN output
ȳ Neuron Output
x̄ Neuron Input
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INTRODUCTION
The applications of Neural Network (NN) spans a wide variety of fields, starting from gam-

ing algorithm, such as Alpha Go [10], to banking predictor models [4]. In recent years the
application of artificial intelligence (AI) and neural networks [13, 8, 3, 5] applied to engineer-
ing design is becoming popular, and employed also in designing wind turbines[1].

The fundamental idea of a Neural Network is to mimic the behaviour of an artificial neuron,
[13]. The artificial neuron receives many inputs signals and it processes these inputs via a
transfer function. If the transfer function is above a threshold, then the neuron will pass a defined
signal. This research led the generation of perceptron [8] as first form of Artificial Intelligence,
with a two layer architecture. However only recently the computers became powerful enough
to have fast back calculations, and ANN evolved to the so called Deep Learning, allowing a
growing complexity in the network topology.

This paper shows the utilization of ANNs to optimize the position of a Coanda Jet along
a wind turbine blade. A Coanda jet is used on wind turbine blades to enhance its circulation
and, as consequence, increasing the lift. However, its position along the blade length is critical
and requires an optimization process. Three design parameters are input in the NN: the angle
of attack α, the position of the jet as a percentage of the blade chord, x

c
, and the jet momen-

tum Cµ. From these inputs, the Neural Networks are used to predict the wind turbine blade
aerodynamics. The accuracy of the network once a design is selected, is validated using CFD
simulations. An optimum position for the Coanda Jet is found through a multi-objective func-
tion. Two different size data-sets are tested to estimate the reliability of the method to build an
optimum meta-model.

Test Case
This paper focuses on the wind turbine blade airfoil S809, specifically designed for HAWT.

Its characteristics are widely documented, and CFD and experimental results are available in
the literature [14, 12, 11, 7]. A Coanda Jet is added on the suction side [2] of this airfoil to
enhance the aerodynamic lift and the stall control. The design variables are the position of the
jet along the blade suction side x

c
and the jet momentum Cµ defined as :

Cµ =
ρjetv

2
jettjet

1
2
ρv2c

(1)

The analysis of the airfoil has been performed in 2D, having the airfoil the same properties
as a wing airfoil. The individual blade has been considered in the simulations. The following
variables are used to characterize the performance of the blade airfoil for the optimization pro-
cess: Lift coefficient CL, Drag coefficient CD, Expansion Ratio of the Jet Γ, defined as ratio
of absolute pressure of Jet inlet to the absolute pressure of the undisturbed flow, and Profile
efficiency η defined as [9]:

η =
CL
CD

. (2)

The value of these coefficients is function of three variables: angle of attack α, jet mo-
mentum Cµ and jet position x

c
. These three design variables will be the ones analyzed and

modified through the optimization process, and the aerodynamics properties of the blade will
be estimated by the Artificial Neura Network.
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The aerodynamic performances obtained with the Coanda jet was evaluated in seven distinct
configurations by varying its position along the airfoil from 0.2x

c
up to 0.8x

c
, as seen in Fig.1.

The thickness of the jet for each configuration was kept constant at tjet = 5.10−5.

Figure 1: Coanda jet positions.

CFD model
The data used to train and test the ANN are the results of CFD simulations. Moreover,

outputs of CFD simulations were employed to confirm the results obtained from the Neural
Network and to validate the outputs. This section describes the CFD simulations. The mesh
was defined after performing a sensitivity analysis, considering aerodynamics convergence as
the mesh was refined. The final mesh selected is made of 12192 cells and 122844 nodes.

The boundary conditions are Inlet (defined with the inlet velocity), Outlet (fixed pressure
value), the horizontal boundaries defined as Free Stream, the airfoil (Wall) and the Jet Veloc-
ity Inlet. Fig. 2 shows a zoom on the airfoil and the Coanda Jet. The characteristics of the
boundaries are described in Table1.

Figure 2: Boundary and mesh on the airfoil and Coanda Jet.

Steady-state simulations were performed. The air was assumed incompressible with ρ =
1.225kg.m−3, and dynamic viscosity µ = 1.8 × 10−5. The Reynolds number of the main flow
was constant, Re = 250, 000. The heat transfer was considered negligible and the selected
turbulence model was k − ω SST [6]. The variables associated to the turbulence model are
turbulence intensity I = 5%, turbulent and kinematic viscosity ratio νratio = 10 for both the
boundaries Inlet and Jet Inlet [2]; therefore the values for k and ω are: k = 1.5m2/s2 and
ω = 8.3× 1031/s for the boundary Inlet, and k =3.75×10−3m2/s2 and ω =3.16×10−4 for Jet
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Cµ vinlet[m] vjet[m] tjet[m] c[m]
0.1 20 89.44 5.0−5 0.2
0.07 20 74.83 5.0−5 0.2
0.04 20 56.57 5.0−5 0.2
0.01 20 28.28 5.0−5 0.2

Table 1: Boundary Conditions numerical values.

Inlet. The height of the first cell at the wall is 10−5m, so that y+ ' 1. In order to validate the
CFD model, the results of the numerical simulations of the basic profile S809 were compared
to the experimental data available in literature [11] for several values of α.

Artificial Neural Network Architecture
In this work different strategies have been tested to build the meta-model of the blade; the

best ANN performances were obtained by using three dedicated networks, one for each output
parameter CL, CD,Γ. A Neural Network architecture is divided in three main blocks: the input
layer, the hidden layers and the output layer. The inputs of the NN selected for the optimization
process are the design variables x

c
, α and Cµ. They enter the input layer and are sent to the

hidden layers, which is made from multiple layers containing a different number of nodes. At
each node n, the inputs of the node, x̄i, are multiplied by a weight ωn,i, then summed up; after
a bias bn is introduced at each node and added to the total sum. The total sum goes through
a transfer function f , before exiting the node and then is sent to the next layer of nodes. The
output ȳn of the node n follows the equation:

ȳn = f(
∑
i

ωn,ix̄i + bn) (3)

The transfer function form depends on the application. For the NN built in this paper, the
hyperbolic tangent sigmoid transfer function and the pure linear transfer function are used.
The hyperbolic tangent sigmoid function is restricted to the interval [−1; 1] and follows the
relationship:

f(x) =
ex − e−x

ex + e−x
(4)

The pure linear transfer function follows the equation:

f(x) = x (5)

The NN are optimized to fit the outputs to the CFD results of the objective variables, which
are CL, CD and Γ for the given inputs. Note that each objective function has its own NN. A
back-propagation algorithm is used to update the weights and biases of the network following
an optimization process that minimize the Mean Squared Error (MSE) cost function. Different
methods are available in the literature to propagate the error to estimate the weights and biases.
For this test case, a gradient based method, which relies on the calculation of the Jacobian
matrix, was used.

The network topology (number of layers, nodes and type of transfer function) for this test
case was chosen comparing the errors of a selection of architectures and in order to avoid
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problems linked to over-fitting. The latter happens when the NN complexity is too high for the
information available and the response output is made to fit exactly the data. As current data
can be noisy, this will impede a good fit to any data not yet observed. Over-fitting systems show
very low error on training data set while error is increased for the testing set.

Data sets
To build the input data set, four values of Jet momentum Cµ were tested for 7 jet positions

along x
c
. Table 2 summarizes the simulations carried out for an angle of attack increment of 1◦,

from 0◦ to 18◦.

x
c

vinlet[m/s] Cµ vjet[m/s] tjet[m]
0.2 20 0.01− 0.07− 0, 04− 0.001 89.44− 74.83− 56.57− 28, 28 5.10−5

0.3 20 0.01− 0.07− 0, 04− 0.001 89.44− 74.83− 56.57− 28, 28 5.10−5

0.4 20 0.01− 0.07− 0, 04− 0, 001 89.44− 74.83− 56.57− 28, 28 5.10−5

0.5 20 0.01− 0.07− 0, 04− 0, 001 89.44− 74.83− 56.57− 28, 28 5.10−5

0.6 20 0.01− 0.07− 0, 04− 0, 001 89.44− 74.83− 56.57− 28, 28 5.10−5

0.7 20 0.01− 0.07− 0, 04− 0, 001 89.44− 74.83− 56.57− 28, 28 5.10−5

0.8 20 0.01− 0.07− 0, 04− 0, 001 89.44− 74.83− 56.57− 28, 28 5.10−5

Table 2: Table summarizing the simulations done and their characteristics

A total of 532 samples were created following these configurations and were used inside
the Neural Network. 70% of the data were used to train the ANN while 30% were kept for
testing it. This set will later be referenced as the complete data set. A second training data set
is built with a reduced set of the original 532 simulations. The set is obtained by applying an
increment of 2◦ the angle of attack α. The quantity of samples was consequently reduced to
280. The proportion for training and testing the ANN remains the same. This second set will
be referenced as the reduced data set.

Numerical Results
The design variables jet position, x

c
, jet momentum Cµ and α represents the inputs of the

ANN and will be associated to a single target value at a time: CL, CD and Γ. The choice
of training three distinct ANNs rather than a single ANN with three target variables was a
consequence of an error analysis which showed that the error was smaller when the outputs
were not coupled within a same ANN.

All networks were trained in a supervised manner for the two different data sets. As for their
topology, that is the choice of the number of layers and neurons and the type of transfer functions
to use, there is no definitive method available in the literature to determine these parameters.
Only a post-processing analysis of the error can judge the quality of the architecture. To select
the optimum configuration, the MSE for the different architectures was recorded and compared;
as shown in Fig.3 for the target variable CL, for both the complete and the reduced data set. A
hidden layer was added every time the error associated to the testing set increased when neurons
were added to the NN topology. This increase is due to an over-fitting behaviour from the NN
over the training set. In the first layers the number of neurons is kept the same to have a balanced
network [1]. The optimum architecture was given by the one presenting the minimum error on
the testing set.
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Network system for CL fitting
For the complete data set, the best network topology to get the value of CL is a three layers

configuration with 9 neurons on the first and second layer, while the output layer is characterized
by 1 neuron. For the reduced data set the architecture chosen is composed of 7 neurons on the
first two layers and 1 neuron on the last layer. The difference in architecture between the two
data sets is mainly explained by the fact that less data will produce simpler network architecture.
Note that complex NN topology for low amount of data will lead to over-fitting problems.

The transfer function architecture for the complete data set was alternated: the first and third
hidden layer use a hyperbolic tangent sigmoid function, the second hidden layer and the output
layer a pure linear. The first hyperbolic tangent is necessary to allow non-linearity inside the
network while the pure linear transfer function allows the transfer of data between each layers.
The transfer function architecture for the reduced data set uses a hyperbolic tangent on the first
and second hidden layer, while the ouput layer uses a pure linear.

Figure 3: MSE for CL as a function of the Network architecture. Complete data set on the left
and reduced data set on the right.

Network system for CD fitting
The same method as described in the previous subsection is used for CD to select the opti-

mum configuration. The optimum configuration of NN with the complete data set has 10 neu-
rons on the first and second hidden layer, associated with a hyperbolic tangent sigmoid transfer
function. The output layer has one neuron and a pure linear transfer function. The reduced data
set has the same configuration as the complete data set, but the number of neurons on the first
and second layer is 5.

Network system for Γ fitting
In the case of Γ, the optimum architecture for the complete dataset has 9 neurons on the

first hidden layer and second hidden layer, both using hyperbolic tangent transfer function. The
output layer has 1 neuron and pure linear transfer function. For the reduced dataset, the optimum
configuration for the NN is found to be 7 neurons on the first and second hidden layer with a
hyperbolic tangent transfer function. The ouput layer has 1 neuron and a pure linear transfer
function.

Multi-objective Optimization
To build the optimum aerodynamic design considering the three design variables which are

x
c
, α and Cµ, a multi-objective optimization is used. A multi-objective optimization is an opti-
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mization process which meets the requirement given by the constraints and provide acceptable
values for all the objectives. The objective values used here are calculated by the NN previously
trained.

The target is maximizing the ratio of CL over CD while minimizing Γ. Minimizing Γ is
minimizing the power used for the Coanda jet. During a multi-objective optimization process,
the optimum solution will be obtained as a trade off between the different objectives. Indeed,
an objective optimum could be reached at the expanse of the other objectives. To avoid excess
penalization and to find the best trade off between the different solutions, a Pareto solution is
used. Note that a Pareto Front will yield a set of optimum solutions in the space described by the
objective function. A design is selected along the Pareto to fit a given criteria. The meta-model
of the blade created by the ANN and its characteristics were compared to the predicted value of
the CFD solver.

To solve the multi-objective optimization, a genetic algorithm is used to search the different
optimum solutions. Fig.4 represents the Pareto Front for the complete and reduced data sets.

Figure 4: Pareto Front associated to the multi-objective optimization: Maximization of CL

CD
and

minimization of Γ. Left the complete data set, right the reduced data set.

To choose a solution along the front, the ratio CL

CD
was normalized to a range of [0; 1]. The

highest efficiency is given the value 1 and the lowest the value 0. The inverse methodology
was applied to Γ. Both normalized values were summed and the maximum value was selected
as the optimum solution. The same procedure was repeated both for the complete and reduced
data set. On the Pareto Front figures, the optimum is represented by the red design point and
its characteristics are reported in Table 3. It can be noticed that the two datasets produced
two slightly different configurations. This discrepancy translates in different values for both
efficiency and power of the jet.

Training sample x
c

α Cµ CL CD
CL

CD
Γ

532 0.63 8.58 0.006 0.88 0.00255 34.30 7.87
280 0.60 8.99 0.0056 0.89 0.00272 33.12 7.90

Table 3: Optimum design characteristics for the complete and reduced data set.

In order to confirm the values obtained, the design variables were used to validate the model
with a CFD solver. The values obtained for both data sets are available in Table 4.
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Training sample x
c

α Cµ CL CD
CL

CD
Γ

532 0.63 8.58 0.006 0.87 0.00267 32.58 8.46
280 0.60 8.99 0.0056 0.892 0.00272 32.79 7.96

Table 4: Optimum design CFD validations for the complete and reduced data set.

The relative error between the value obtained with the genetic algorithm and the CFD solver
are summed up in Table 5.

Training sample CL error in % CD error in % CL

CD
error in % Γ error in %

532 0.864 4.71 4.99 6.4
280 0.82 0.005 1.01 1.09

Table 5: Error comparison in percentage between the NN predictions and the CFD solver pre-
dictions.

To evaluate the reliability of the configuration found through the optimization process, the
error generated by the meta-model compared to the CFD solver is calculated for all the perfor-
mance values. In Fig.5 the error is represented by the area in color and represents the difference
between the output of the NN and the CFD simulation.

Figure 5: Error analysis for the two objectives functions vs. angle of attack, α

The error analysis shows that the reduced data set produces better results than the complete
data set in terms of error. The error mean and standard deviation is given in Table 6.

The main reason for the complete data set to produce a higher error is an over-fitting prob-
lem. Its architecture includes a higher number of neurons and layers and consequently it is
more sensitive to this phenomenon. However, in light of all the results available, it can be no-
ticed that this is not a global trend for all the results as for some cases the complete data set
delivers smaller error as compared the the reduced data set. Also, note that the error remains
qualitatively small. The CFD simulations results can be visualized in Fig. 6.

Conclusion
From the present study it emerges that the use of neural networks for the optimization of a

profile is a valid alternative to optimization methods commonly used, such as methods based
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Training sample Error CL CD Γ CL

CD

532 µ 5.2× 10−3 −6.1× 10−4 −.037 0.3
532 σ 1.0× 10−2 2.0× 10−3 0.2 0.7
280 µ 4.3× 10−3 5.5× 10−4 0.1 −9.0× 10−3

280 σ 1.0× 10−2 1.0× 10−3 1.5× 10−2 0.3

Table 6: Mean and standard deviation of error between NN prediction and CFD validation.

Figure 6: Complete dataset CFD validation of optimum design. On the left the velocity contour
around the airfoil, on the right a zoom is done on the Coanda Jet.

on gradient-descent. Furthermore, it shows to be effective for design spaces where the multi-
objective function is not characterized by a single minimum, but contains multiple local minima
and maxima.

The numerical analysis shows that the ANN predicts with low error the response of the
designs once compared to the CFD estimations. Problems of over-fitting inherent to the NN,
have been tackled through a selection process to determine the optimum number of neurons and
layers.

Slightly different configurations were obtained depending on the size of the data sets. The
reason of the discrepancy lies essentially on the characteristics of the network. The CFD valida-
tion proved the validity of the response given by the NN with a low error. It was noticed during
the first multi-objective optimization that the complete data set showed a considerably higher
error than the reduced data set. It hints at a problem of over-fitting even though an optimization
process was done to reduce its possibility. The reduced data set showed that a large amount
of data is not required and a good fit from the NN is obtainable at a lesser cost on computer
time resources. This study checked the validity of the method for design optimization for 2D
designs. However further work needs to be done to tackle 3D optimization which will done in
further work.
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