10 research outputs found

    Epidemiological study of antimicrobial-resistant bacteria in healthy free-ranging bantengs (Bos javanicus) and domestic cattle

    Get PDF
    Background and Aim: Antimicrobial-resistant microorganisms (ARMs) have been increasing among wild animals. Interactions occurring at the interface between wildlife, humans, and livestock can lead to the transmission of ARMs. Thus, the prevalence of ARMs in wild and domestic animals should be determined to address and prevent this issue. This study aimed to determine the resistance patterns of cefotaxime (CTX)-resistant Escherichia coli and identify the presence of extended-spectrum beta-lactamase (ESBL) genes in ESBL-producing E. coli among a population of wild banteng (Bos javanicus) and domestic cattle kept on farms located close to the Lam Pao non-hunting area, Kalasin province, Thailand. Materials and Methods: Forty-five fecal samples were taken from wild bantengs inhabiting the Lam Pao non-hunting area in Thailand, alongside 15 samples from domestic cattle. Bacterial culture, triple sugar iron, and motile indole lysine tests were conducted to identify E. coli. A polymerase chain reaction (PCR) was conducted for specific confirmation. MacConkey agar supplemented with 2 μg/mL of CTX was used to identify CTX-resistant E. coli, which would be used to identify ESBL production based on a double-disk synergy test. Extended-spectrum beta-lactamase-producing samples were subjected to disk diffusion tests to determine resistant patterns, and the sizes of PCR bands and DNA sequencing were used to differentiate ESBL gene types. Results: All samples tested positive for E. coli. Forty-five isolates from 15 banteng samples and three isolates from one domestic cattle sample displayed CTX-resistant and ESBL-producing traits. The banteng and domestic cattle populations exhibited nine and three distinct resistant patterns, respectively. The PCR results indicated that the banteng isolates harbored the following genes: Cefotaxime-M1 (n = 38), CTX-M9 (n = 5), and the SHV group (n = 2). All three isolates from the domestic cattle sample contained the CTX-M1 gene. Classification of ESBL genes based on the DNA sequences of the banteng isolates showed the characteristics of CTX-M15 (n = 20), CTX-M55 (n = 6), CTX-M14 (n = 5), and CTX-M79 (n = 1). The three domestic cattle isolates exhibited the characteristics of CTX-M15, CTX-M55, and CTX-M79. Conclusion: Despite no previous antibiotic applications, approximately one-third of the banteng samples displayed CTX resistance, indicating ARM contamination within the ecosystem. The similarity in ESBL genes between the banteng and domestic cattle populations suggests potential gene transmissions between these animal groups. However, the initial source of ARMs remains unclear, as the banteng population exhibited more ESBL genes than the domestic cattle, suggesting the possibility of multiple ARM sources. These findings raise concerns because the banteng population inhabits an area that is an important source of freshwater and nourishes the entire north-east region of Thailand and other South-east Asian countries, including Laos, Cambodia, and Southern Vietnam

    The occurrence of CTX-M-25-producing Enterobacteriaceae in day-old broiler chicks in Japan

    No full text

    Isolation and Characterization of Antimicrobial-Resistant Escherichia coli from Retail Meats from Roadside Butcheries in Uganda

    Get PDF
    Retail meats are one of the main routes for spreading antimicrobial-resistant bacteria (ARB) from livestock to humans through the food chain. In African countries, retail meats are often sold at roadside butcheries without chilling or refrigeration. Retail meats in those butcheries are suspected to be contaminated by ARB, but it was not clear. In this study, we tested for the presence of antimicrobial-resistantEscherichia colifrom retail meats (n = 64) from roadside butcheries in Kampala, Uganda. The meat surfaces were swabbed and inoculated on PetriFilm SEC agar to isolateE. coli. We successfully isolatedE. colifrom 90.6% of these retail meat samples. We identified the phylogenetic type, antimicrobial susceptibility, and antimicrobial resistance genes prevalence between retail meat isolates (n = 89). Phylogenetic type B1 was identified from 70.8% of the retail meat isolates, suggesting that the isolates originated primarily from fecal contamination during meat processing. Tetracycline (TET)-resistant isolates withtetAand/ortetBgene(s) were the most frequently detected (28.1%), followed by ampicillin (AMP) resistance genes withbla(TEM)(15.7%,) and sulfamethoxazole-trimethoprim (SXT) resistance genes withsul2(15.7%). No extended-spectrum beta-lactamase-producing isolates were detected. A conjugation assay showed that resistance to AMP, TET, and SXT could be simultaneously transferred to recipients. These findings suggest that antimicrobial-resistantE. colican easily be transferred from farms to tables from retail meats obtained from roadside butcheries

    Association between the blaCTX-M-14-harboring Escherichia coli Isolated from Weasels and Domestic Animals Reared on a University Campus

    No full text
    Antimicrobial-resistant (AMR) bacteria affect human and animal health worldwide. Here, CTX-M-14-producing Escherichia coli isolates were isolated from Siberian weasels (Mustela sibirica) that were captured on a veterinary campus. To clarify the source of bacteria in the weasels, we examined the domestic animals reared in seven facilities on the campus. Extended-spectrum β-lactamase (ESBL)-producing E. coli were isolated on deoxycholate hydrogen sulfide lactose agar, containing cephalexin (50 μg/mL) or cefotaxime (2 μg/mL), and were characterized with antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), replicon typing, and β-lactamase typing analyses. Next-generation sequencing of the ESBL-encoding plasmids was also performed. CTX-M-14 producers isolated from both domestic animals and weasels were classified into six clusters with seven PFGE profiles. The PFGE and antimicrobial resistance profiles were characterized by the animal facility. All CTX-M-14 plasmids belonged to the IncI1 type with a similar size (98.9–99.3 kb), except for one plasmid that was 105.5 kb in length. The unweighted pair group method with arithmetic mean (UPGMA) revealed that the CTX-M-14 plasmid in the weasel isolates might have the same origin as the CTX-M-14 plasmid in the domestic animals. Our findings shed further light on the association of antimicrobial resistance between wild and domestic animals
    corecore