23 research outputs found

    REAL-TIME METHOD FOR THE DETECTION OF VIABLE MICRO-ORGANISMS

    Get PDF
    The invention relates to a method for real-time detection of viable microorganisms comprising: a. addition of a cell-permeable, phototautomeric compound to a micro-organism or other living cell; and b. measuring the fluorescent emission of said phototautomeric compound. Preferably the phototautomeric compound is salicylic acid, 2-hydroxy-1-naphtoic acid or 1-hydroxy-2-naphtoic acid. Further, the assay can he used to assess the antibiotic effect of a test compound. This test can be used as a high-throughput screening for compounds with antibiotic activity. Also part of the invention is the use of a cell permeable phototautomeric compound in a method for determining the viability of micro-organisms and for assessing the antibiotic effect of a test compound

    Genomic Diversity within the Enterobacter cloacae Complex

    Get PDF
    Background: Isolates of the Enterobacter cloacae complex have been increasingly isolated as nosocomial pathogens, but phenotypic identification of the E. cloacae complex is unreliable and irreproducible. Identification of species based on currently available genotyping tools is already superior to phenotypic identification, but the taxonomy of isolates belonging to this complex is cumbersome. Methodolgy/Principal Findings: This study shows that multilocus sequence analysis and comparative genomic hybridization based on a mixed genome array is a powerful method for studying species assignment within the E. cloacae complex. The E. cloacae complex is shown to be evolutionarily divided into two clades that are genetically distinct from each other. The younger first clade is genetically more homogenous, contains the Enterobacter hormaechei species and is the most frequently cultured Enterobacter species in hospitals. The second and older clade consists of several (sub)species that are genetically more heterogonous. Genetic markers were identified that could discriminate between the two clades and cluster 1. Conclusions/Significance: Based on genomic differences it is concluded that some previously defined (clonal and heterogenic) (sub)species of the E. cloacae complex have to be redefined because of disagreements with known or proposed nomenclature. However, further improved identification of the redefined species will be possible based on novel markers presented here. © 2008 Paauw et al. Chemicals / CAS: Bacterial Proteins; DNA, Bacteria

    Variability and Diversity of Nasopharyngeal Microbiota in Children: A Metagenomic Analysis

    Get PDF
    The nasopharynx is the ecological niche for many commensal bacteria and for potential respiratory or invasive pathogens like Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis. Disturbance of a balanced nasopharyngeal (NP) microbiome might be involved in the onset of symptomatic infections with these pathogens, which occurs primarily in fall and winter. It is unknown whether seasonal infection patterns are associated with concomitant changes in NP microbiota. As young children are generally prone to respiratory and invasive infections, we characterized the NP microbiota of 96 healthy children by barcoded pyrosequencing of the V5–V6 hypervariable region of the 16S-rRNA gene, and compared microbiota composition between children sampled in winter/fall with children sampled in spring. The approximately 1000000 sequences generated represented 13 taxonomic phyla and approximately 250 species-level phyla types (OTUs). The 5 most predominant phyla were Proteobacteria (64%), Firmicutes (21%), Bacteroidetes (11%), Actinobacteria (3%) and Fusobacteria (1,4%) with Moraxella, Haemophilus, Streptococcus, Flavobacteria, Dolosigranulum, Corynebacterium and Neisseria as predominant genera. The inter-individual variability was that high that on OTU level a core microbiome could not be defined. Microbiota profiles varied strongly with season, with in fall/winter a predominance of Proteobacteria (relative abundance (% of all sequences): 75% versus 51% in spring) and Fusobacteria (absolute abundance (% of children): 14% versus 2% in spring), and in spring a predominance of Bacteroidetes (relative abundance: 19% versus 3% in fall/winter, absolute abundance: 91% versus 54% in fall/winter), and Firmicutes. The latter increase is mainly due to (Brevi)bacillus and Lactobacillus species (absolute abundance: 96% versus 10% in fall/winter) which are like Bacteroidetes species generally related to healthy ecosystems. The observed seasonal effects could not be attributed to recent antibiotics or viral co-infection

    Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An understanding of the relation of commensal microbiota to health is essential in preventing disease. Here we studied the oral microbial composition of children (N = 74, aged 3 - 18 years) in natural transition from their deciduous to a permanent dentition and related the microbial profiles to their oral health status. The microbial composition of saliva was assessed by barcoded pyrosequencing of the V5-V6 hypervariable regions of the 16 S rRNA, as well as by using phylogenetic microarrays.</p> <p>Results</p> <p>Pyrosequencing reads (126174 reads, 1045 unique sequences) represented 8 phyla and 113 higher taxa in saliva samples. Four phyla - Firmicutes, Bacteriodetes, Proteobacteria and Actinobacteria - predominated in all groups. The deciduous dentition harboured a higher proportion of Proteobacteria (Gammaproteobacteria, Moraxellaceae) than Bacteroidetes, while in all other groups Bacteroidetes were at least as abundant as Proteobacteria. Bacteroidetes (mainly genus <it>Prevotella</it>), Veillonellaceae family, Spirochaetes and candidate division TM7 increased with increasing age, reflecting maturation of the microbiome driven by biological changes with age.</p> <p>Microarray analysis enabled further analysis of the individual salivary microbiota. Of 350 microarray probes, 156 gave a positive signal with, on average, 77 (range 48-93) probes per individual sample.</p> <p>A caries-free oral status significantly associated with the higher signal of the probes targeting <it>Porphyromonas catoniae </it>and <it>Neisseria flavescens</it>.</p> <p>Conclusions</p> <p>The potential role of <it>P. catoniae </it>and <it>N. flavescens </it>as oral health markers should be assessed in large-scale clinical studies. The combination of both, open-ended and targeted molecular approaches provides us with information that will increase our understanding of the interplay between the human host and its microbiome.</p

    Localization of Synthesis of β1,6-Glucan in Saccharomyces cerevisiae

    No full text
    β1,6-Glucan is a key component of the yeast cell wall, interconnecting cell wall proteins, β1,3-glucan, and chitin. It has been postulated that the synthesis of β1,6-glucan begins in the endoplasmic reticulum with the formation of protein-bound primer structures and that these primer structures are extended in the Golgi complex by two putative glucosyltransferases that are functionally redundant, Kre6 and Skn1. This is followed by maturation steps at the cell surface and by coupling to other cell wall macromolecules. We have reinvestigated the role of Kre6 and Skn1 in the biogenesis of β1,6-glucan. Using hydrophobic cluster analysis, we found that Kre6 and Skn1 show significant similarities to family 16 glycoside hydrolases but not to nucleotide diphospho-sugar glycosyltransferases, indicating that they are glucosyl hydrolases or transglucosylases instead of genuine glucosyltransferases. Next, using immunogold labeling, we tried to visualize intracellular β1,6-glucan in cryofixed sec1-1 cells which had accumulated secretory vesicles at the restrictive temperature. No intracellular labeling was observed, but the cell surface was heavily labeled. Consistent with this, we could detect substantial amounts of β1,6-glucan in isolated plasma membrane-derived microsomes but not in post-Golgi secretory vesicles. Taken together, our data indicate that the synthesis of β1,6-glucan takes place largely at the cell surface. An alternative function for Kre6 and Skn1 is discussed
    corecore