2 research outputs found

    Schiff bases complexed with iron and their relation with the life cycle and infection by Schistosoma mansoni

    Get PDF
    Funding Information: This work was supported by the Support Foundation of São Paulo (FAPESP) [No. 2014/12568-4] and National Counsel of Technological and Scientific Development (CNPq) [No. 100763/2015-4] received by JV da Silva. Acknowledgments Publisher Copyright: Copyright © 2022 da Silva, Moreira, Montija, Feitosa, Correia, Domingues, Soares, Allegretti, Afonso and Anibal.Introduction: The trematode Schistosoma mansoni causes schistosomiasis, and this parasite’s life cycle depends on the mollusk Biomphalaria glabrata. The most effective treatment for infected people is administering a single dose of Praziquantel. However, there are naturally resistant to treatment. This work has developed, considering this parasite’s complex life cycle. Methods: The synthetics compound were evaluated: i) during the infection of B. glabrata, ii) during the infection of BALB/c mice, and iii) during the treatment of mice infected with S. mansoni. Results and Discussion: For the first objective, snails infected with miracidia treated with compounds C1 and C3 at concentrations of 25% IC50 and 50% IC50, after 80 days of infection, released fewer cercariae than the infected group without treatment. For the second objective, compounds C1 and C3 did not show significant results in the infected group without treatment. For the third objective, the mice treated with C3 and C1 reduced the global and differential cell count. The results suggest that although the evaluated compounds do not present schistosomicidal properties when placed in cercariae suspension, they can stimulate an immune reaction in snails and decrease mice’s inflammatory response. In general, we can conclude that compound C1 and C3 has an anti-schistosomicidal effect both in the larval phase (miracidia) and in the adult form of the parasite.publishersversionpublishe

    HGPRT and PNP: Recombinant Enzymes from <i>Schistosoma mansoni</i> and Their Role in Immunotherapy during Experimental Murine Schistosomiasis

    No full text
    Schistosomiasis is a parasitic infection caused by trematode worms (also called blood flukes) of the genus Schistosoma sp., which affects over 230 million people worldwide, causing 200,000 deaths annually. There is no vaccine or new drugs available, which represents a worrying aspect, since there is loss of sensitivity of the parasite to the medication recommended by the World Health Organization, Praziquantel. The present study evaluated the effects of the recombinant enzymes of S. mansoni Hypoxanthine-Guanine Phosphoribosyltransferase (HGPRT), Purine Nucleoside Phosphorylase (PNP) and the MIX of both enzymes in the immunotherapy of schistosomiasis in murine model. These enzymes are part of the purine salvage pathway, the only metabolic pathway present in the parasite for this purpose, being essential for the synthesis of DNA and RNA. Female mice of Swiss and BALB/c strains were infected with cercariae and treated, intraperitoneally, with three doses of 100 µg of enzymes. After the immunotherapy, the eggs and adult worms were counted in the feces; the number of eosinophils from the fluid in the peritoneal cavity and peripheral blood was observed; and the quantification of the cytokine IL-4 and the production of antibodies IgE was analyzed. The evaluation of the number of granulomas and collagen deposition via histological slides of the liver was performed. The results demonstrate that immunotherapy with the enzyme HGPRT seems to stimulate the production of IL-4 and promoted a significant reduction of granulomas in the liver in treated animals. The treatment with the enzyme PNP and the MIX was able to reduce the number of worms in the liver and in the mesenteric vessels of the intestine, to reduce the number of eggs in the feces and to negatively modulate the number of eosinophils. Therefore, immunotherapy with the recombinant enzymes of S. mansoni HGPRT and PNP might contribute to the control and reduction of the pathophysiological aspects of schistosomiasis, helping to decrease the morbidity associated with the infection in murine model
    corecore